DNA repair is critical to resolve extrinsic or intrinsic DNA damage to ensure regulated gene transcription and DNA replication. These pathways control repair of double strand breaks, interstrand crosslinks, and nucleotide lesions occurring on single strands. Distinct DNA repair pathways are highly inter-linked for the fast and optimal DNA repair. A deregulation of DNA repair pathways may maintain and promote genetic instability and drug resistance to genotoxic agents in tumor cells by specific mechanisms that tolerate or rapidly bypass lesions to drive proliferation and abrogate cell death. Multiple Myeloma (MM) is a plasma cell disorder characterized by genetic instability and poor outcome for some patients, in which the compendium of DNA repair pathways has as yet not been assessed for a disease-specific prognostic relevance. We design a DNA repair risk score based on the expression of genes coding for proteins involved in DNA repair in MM cells. From a consensus list of 84 DNA repair genes, 17 had a bad prognostic value and 5 a good prognostic value for both event-free and overall survival of previously-untreated MM patients. The prognostic information provided by these 22 prognostic genes was summed within a global DNA repair score (DRScore) to take into account the tight linkage of repair pathways. DRscore was strongly predictive for both patients' event free and overall survivals. Also, DRscore has the potential to identify MM patients whose tumor cells are dependent on specific DNA repair pathways to design treatments that induce synthetic lethality by exploiting addiction to deregulated DNA repair pathways.
Ovarian carcinomas (OvCa) are highly heterogeneous malignancies. We investigated four circulating plasma microRNAs (miR-21, miR-34a, miR-200b and miR-205) as candidate biomarkers. Using qPCR, we assessed the plasma concentration of these markers in 101 women, including 51 previously untreated OvCa patients, 25 healthy women and 25 patients bearing benign pelvic lesions. For a subset of 33 OvCa patients, the assay was repeated at the end of the primary treatment. The pattern of variations (post- minus pre-treatment) of concentration was compared to that of CA-125. A Cox regression model was used to study the association between variations and the progression-free survival (PFS). Plasma miR-200b proved to have a greater average concentration in OvCa samples (median 2−ΔΔCt = 15.18) than in samples linked to non-malignant lesions (median 2−ΔΔCt = 1.26, p-value = 0.0004). Its concentration was highly heterogeneous among OvCa patients, without any correlations with the FIGO stage and the pre-treatment CA-125 level. The decrease in CA-125 concentration was constant and often dramatic, while the variations of miR-200b concentration were much more diverse. The variation of miR-200b was marginally associated with the PFS (hazard ratio=2.95 95%CI=[0.94; 9.28], p=0.06) while miR-200b as a continuous time-dependent variable was significantly associated (HR=1.06 [1.02; 1.10], p=0.003). This study is the first direct empirical evidence that miR-200b can provide additional information, independent of CA-125 in OvCa patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.