Grapevine trutk diseases, especially Esca, are of major concern since they gradually alter vineyards worldwide and cause heavy economic losses. The expression of Esca disease symptoms depends on several factors, including the grapevine cultivar. In this context, a possible clone-dependent expression of the Esca disease was studied. Two clones of ‘Chardonnay’ grown in the same plot were compared according to their developmental and physiological traits, metabolome, and foliar symptom expression. Analysis of their leaf metabolome highlighted differences related to symptom expression. Interestingly, the content of a few specific metabolites exhibited opposite variations in leaves of symptomatic shoots of clones 76 and 95. Altogether this study showed a clone-dependent expression of Esca disease in ‘Chardonnay’ and the relevance of GC-MS and 3D fluorescence methods to analyze the impact of the disease on the leaf metabolome.
Esca is a complex grapevine trunk disease caused by wood‐rotting ascomycetes and basidiomycetes and leading to several foliar and wood symptoms. Given that the esca expression can be influenced by several environmental, physiological, and genetic factors, foliar symptoms are inconsistent in incidence and prevalence and may appear 1 year but not the following. We have previously reported a clone‐dependent expression of the disease in cv Chardonnay. Owing to metabolome analysis, we could discriminate the metabolite fingerprint of green leaves collected on diseased vines of clones 76 and 95. These clone‐dependent fingerprints were year‐dependent in intensity and nature. The present work was conducted to determine if the clone‐dependent disease expression observed is specific to Chardonnay or if it also occurs in another cultivar. A plot located in the Jura vineyard (France) and planted with both 1004 and 1026 clones of Trousseau, a cultivar highly susceptible to esca, was thus selected and studied during 2017 and 2018. A year‐dependent variation of the symptoms expression was first observed and a possible relationship with rainfall is hypothesized and discussed. Moreover, a higher percentage of the clone 1026 vines expressed disease, compared to the 1004 ones, suggesting the higher susceptibility of this clone. Finally, metabolomic analyses of the remaining green leaves (i.e, without symptom expression) of partial esca‐apoplectic vines allowed us to confirm a clone‐dependent metabolic response to the disease. The metabolite fingerprints obtained differed in nature and intensity to those previously reported for Chardonnay and also between years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.