We present the first two identified cases of phosphoserine aminotransferase deficiency. This disorder of serine biosynthesis has been identified in two siblings who showed low concentrations of serine and glycine in plasma and cerebrospinal fluid. Clinically, the index patient presented with intractable seizures, acquired microcephaly, hypertonia, and psychomotor retardation and died at age 7 mo despite supplementation with serine (500 mg/kg/d) and glycine (200 mg/kg/d) from age 11 wk. The younger sibling received treatment from birth, which led to a normal outcome at age 3 years. Measurement of phosphoserine aminotransferase activity in cultured fibroblasts in the index patient was inconclusive, but mutational analysis revealed compound heterozygosity for two mutations in the PSAT1 gene--one frameshift mutation (c.delG107) and one missense mutation (c.299A-->C [p.Asp100Ala])--in both siblings. Expression studies of the p.Asp100Ala mutant protein revealed a V(max) of only 15% of that of the wild-type protein.
Aminoacylase 1 deficiency is a novel inborn error of metabolism. The clinical significance of the deficiency is under discussion, as well as the possible consequences of the defect for brain metabolism and function. This study includes the five originally published cases as well as three novel ones. NMR spectroscopy of urine, serum and cerebrospinal fluid has been used to study these patients. A typical profile with 11 accumulating N-acetylated amino acids was observed in urine from the patients. The concentration of most of the accumulating metabolites is typically 100-500 micromol/mmol creatinine. Two additional minor N-acetylated metabolites remain unidentified. The concentrations of the accumulating metabolites are <20 micromol/L in serum from the patients. Interestingly we found no evidence of an increased concentration of N-acetylated amino acids in the cerebrospinal fluid from one patient. Our data define aminoacylase 1 deficiency at the metabolite level providing a specific urinary profile of accumulating N-acetylated amino acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.