Spinning is one of the major steps in textiles to convert staple fibers from either natural or synthetic sources into continuous and twisted yarns, and ring spinning has always been the dominant yarn technology since its invention. Recently, many ring-based modifications have been developed to improve yarn productivity and properties. In this work, a modified ring spinning technique has been developed by feeding three-roving strands into a conventional ring frame for producing yarns with better performance. A strand delivery guide with different spacings (1–5 mm) was used for the production of three-strand yarns. The quantitative relationships between the spinning parameters and yarn properties have been systematically investigated. The properties of the modified yarns were evaluated, including yarn tensile properties, evenness, and hairiness, and the statistical relationships were obtained by least squares polynomial fitting. The experimental results indicate that the guide spacing and twist multiplier significantly influence the yarn properties. The spinning triangle of the modified yarns resembles Solospun yarns, suggesting supreme yarn abrasion performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.