Background and purpose: Cannabidiol (CBD) is a phytocannabinoid, with anti-apoptotic, anti-inflammatory and antioxidant effects and has recently been shown to exert a tissue sparing effect during chronic myocardial ischaemia and reperfusion (I/R). However, it is not known whether CBD is cardioprotective in the acute phase of I/R injury and the present studies tested this hypothesis. Experimental approach: Male Sprague-Dawley rats received either vehicle or CBD (10 or 50 mg·kg -1 i.v.) 10 min before 30 min coronary artery occlusion or CBD (50 mg·kg -1 i.v.) 10 min before reperfusion (2 h). The appearance of ventricular arrhythmias during the ischaemic and immediate post-reperfusion periods were recorded and the hearts excised for infarct size determination and assessment of mast cell degranulation. Arterial blood was withdrawn at the end of the reperfusion period to assess platelet aggregation in response to collagen. Key results: CBD reduced both the total number of ischaemia-induced arrhythmias and infarct size when administered prior to ischaemia, an effect that was dose-dependent. Infarct size was also reduced when CBD was given prior to reperfusion. CBD (50 mg·kg -1 i.v.) given prior to ischaemia, but not at reperfusion, attenuated collagen-induced platelet aggregation compared with control, but had no effect on ischaemia-induced mast cell degranulation. Conclusions and implications:This study demonstrates that CBD is cardioprotective in the acute phase of I/R by both reducing ventricular arrhythmias and attenuating infarct size. The anti-arrhythmic effect, but not the tissue sparing effect, may be mediated through an inhibitory effect on platelet activation. British Journal of Pharmacology
Aims Cardiac energetic impairment is a major finding in takotsubo patients. We investigate specific metabolic adaptations to direct future therapies. Methods and Results An isoprenaline-injection female rat model (versus sham) was studied at day-3; recovery assessed at day-7. Substrate uptake, metabolism, inflammation and remodelling were investigated by 18F-FDG-PET, metabolomics, qPCR and WB. Isolated cardiomyocytes were patch-clamped during stress protocols for redox states of NAD(P)H/FAD or [Ca2+]c, [Ca2+]m and sarcomere length. Mitochondrial respiration was assessed by seahorse/Clark electrode (glycolytic and β-oxidation substrates). Cardiac 18F-FDG metabolic rate was increased in takotsubo (p = 0.006), as were expression of GLUT4-RNA/GLUT1/HK2-RNA and HK activity (all p < 0.05), with concomitant accumulation of glucose- and fructose-6-phosphates (p > 0.0001). Both lactate and pyruvate were lower (p < 0.05) despite increases in LDH-RNA and PDH (p < 0.05 both). β-oxidation enzymes CPT1b-RNA and 3KAT were increased (p < 0.01) but malonyl-CoA (CPT-1 regulator) was upregulated (p = 0.01) with decreased fatty acids and acyl-carnitines levels (p = 0.0001-0.02). Krebs cycle intermediates α-ketoglutarate and succinyl-carnitine were reduced (p < 0.05) as was cellular ATP reporter dihydroorotate (p = 0.003). Mitochondrial Ca2+ uptake during high workload was impaired on day-3 (p < 0.0001), inducing oxidation of NAD(P)H and FAD (p = 0.03) but resolved by day-7. There were no differences in mitochondrial respiratory function, sarcomere shortening or [Ca2+] transients of isolated cardiomyocytes, implying preserved integrity of both mitochondria and cardiomyocyte. Inflammation and remodelling were upregulated - increased CD68-RNA, collagen RNA/protein and skeletal actin RNA (all p < 0.05). Conclusion Dys-regulation of glucose and lipid metabolic pathways with decreases in final glycolytic and β-oxidation metabolites and reduced availability of Krebs intermediates characterises takotsubo myocardium. The energetic deficit accompanies defective Ca2+ handling, inflammation and upregulation of remodelling pathways, with preservation of sarcomeric and mitochondrial integrity. Translational Perspective The simultaneous dysregulation in the glycolytic and beta-oxidation pathways which underlies the energetic deficit of the takotsubo heart supports further testing of currently available metabolic modulators as possible candidates for successful therapy, as well as targeting the inflammatory and remodelling pathways.
The receptors mediating the hemodynamic responses to cannabinoids are not clearly defined due to the multifarious pharmacology of many commonly used cannabinoid ligands. While both CB1 and TRPV1 receptors are implicated, G protein-coupled receptor 55 (GPR55) may also mediate some of the hemodynamic effects of several atypical cannabinoid ligands. The present studies attempted to unravel the pharmacology underlying the in vivo hemodynamic responses to ACEA (CB1 agonist), O-1602 (GPR55 agonist), AM251 (CB1 antagonist), and cannabidiol (CBD; GPR55 antagonist). Agonist and antagonist profiles of each ligand were determined by ligand-induced GTPγS binding in membrane preparations expressing rat and mouse CB1 and GPR55 receptors. Blood pressure responses to ACEA and O-1602 were recorded in anesthetized and conscious mice (wild type, CB1−/− and GPR55−/−) and rats in the absence and presence of AM251 and CBD. ACEA demonstrated GTPγS activation at both receptors, while O-1602 only activated GPR55. AM251 exhibited antagonist activity at CB1 and agonist activity at GPR55, while CBD demonstrated selective antagonist activity at GPR55. The depressor response to ACEA was blocked by AM251 and attenuated by CBD, while O-1602 did not induce a depressor response. AM251 caused a depressor response that was absent in GPR55−/− mice but enhanced by CBD, while CBD caused a small vasodepressor response that persisted in GPR55−/− mice. Our findings show that assessment of the pharmacological profile of receptor activation by cannabinoid ligands in in vitro studies alongside in vivo functional studies is essential to understand the role of cannabinoids in hemodynamic control.
Cannabidiol (CBD) has been shown to be anti-arrhythmic (Walsh et al, 2010) and tissue sparing (Durst et al, 2007) in an in vivo rat model of coronary artery occlusion (CAO), although the receptors through which this occurs have yet to be identified. This study was designed to investigate whether the antiarrhythmic effects of CBD are modified by co-administration with a CB1 receptor antagonist (AM251). Experimental CAO was induced by ligation of the LAD coronary artery for 30 min; in sodium pentobarbitone anaesthetised male SD rats. Experimental groups included; (i) vehicle, (ii) CBD (50 μg/kg) alone, (iii) AM251 (1 mg/kg) alone, (iv) CBD followed by AM251, and (v) AM251 followed by CBD. CBD or AM251 alone each reduced the incidence of VT and the total number of VEBs compared with the control group, as did AM251 when administered 5 min after CBD. However, in animals treated with AM251 followed by CBD, the antiarrhythmic effect was significantly more pronounced 1274±303 (VT, P<0.01) and 1727±416 (total VEBs, P<0.001) when compared with all other treatment groups. The ability of AM251 to suppress arrhythmias suggests that endocannabinoids may exert pro-arrhythmic effects via the CB1 receptor. The preservation of anti-arrhythmic effects of both AM251 and CBD when co-administered, implies that a simple agonist/antagonist relationship at the CB1 receptor, may not be responsible for the antiarrhythmic effects of either alone. The observed synergism which persists when CB1 receptors are blocked prior to CBD administration, suggests cross-talk between CB1 and other CB receptors in the heart during ischaemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.