Increasing temperatures associated with climate change may generate phenological mismatches that disrupt previously synchronous trophic interactions. Most work on mismatch has focused on temporal trends, whereas spatial variation in the degree of trophic synchrony has largely been neglected, even though the degree to which mismatch varies in space has implications for meso-scale population dynamics and evolution. Here we quantify latitudinal trends in phenological mismatch, using phenological data on an oak-caterpillar-bird system from across the UK. Increasing latitude delays phenology of all species, but more so for oak, resulting in a shorter interval between leaf emergence and peak caterpillar biomass at northern locations. Asynchrony found between peak caterpillar biomass and peak nestling demand of blue tits, great tits and pied flycatchers increases in earlier (warm) springs. There is no evidence of spatial variation in the timing of peak nestling demand relative to peak caterpillar biomass for any species. Phenological mismatch alone is thus unlikely to explain spatial variation in population trends. Given projections of continued spring warming, we predict that temperate forest birds will become increasingly mismatched with peak caterpillar timing. Latitudinal invariance in the direction of mismatch may act as a double-edged sword that presents no opportunities for spatial buffering from the effects of mismatch on population size, but generates spatially consistent directional selection on timing, which could facilitate rapid evolutionary change.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
To maximize the effectiveness of conservation interventions, it is crucial to have an understanding of how intraspecific variation determines the relative importance of potential limiting factors. For bird populations, limiting factors include nest-site availability and foraging resources, with the former often addressed through the provision of artificial nestboxes. However, the effectiveness of artificial nestboxes depends on the relative importance of nest-site vs. foraging resource limitations. Here, we investigate factors driving variation in breeding density, nestbox occupation and productivity in two contrasting study populations of the European Roller Coracias garrulus, an obligate cavity-nesting insectivorous bird. Breeding density was more than four times higher at the French study site than at the Latvian site, and there was a positive correlation between breeding density (at the 1-km 2 scale) and nest-site availability in France, whereas there was a positive correlation between breeding density and foraging resource availability in Latvia. Similarly, the probability of a nestbox being occupied increased with predicted foraging resource availability in Latvia but not in France. We detected no positive effect of foraging resource availability on productivity at either site, with most variation in breeding success driven by temporal effects: a seasonal decline in France and strong interannual fluctuations in Latvia. Our results indicate that the factors limiting local breeding density can vary across a species' range, resulting in different conservation priorities. Nestbox provisioning is a sufficient short-term conservation solution at our French study site, where foraging resources are typically abundant, but in Latvia the restoration of foraging habitat may be more important.Conservation actions tend to focus on manipulating breeding season processes because these are generally the easiest to control, especially for migratory populations which often disperse over distant and disparate non-breeding sites (Finch et al. 2017). Understanding the factors which limit the breeding density or productivity of threatened species is therefore often crucial for their †
Humans have drastically changed environmental conditions on Earth, particularly since the invention of agriculture during the Neolithic Revolution. The footprint of human activity is most pronounced in urban environments, where microclimatic conditions, biogeochemical cycles and sensory landscapes are considerably different from those in non-urban habitats (Grimm et al., 2008). Perhaps not surprisingly, multiple shifts in animal and plant phenotypes have been associated with the novel conditions and selective
Urbanisation is a globally occurring phenomenon and is predicted to continue increasing rapidly. Urban ecosystems present novel environments and challenges which species must acclimate or adapt to. These novel challenges alter existing or create new selection pressures on behaviours which provide an opportunity to investigate eco-evolutionary responses to contemporary environmental change. We used 7 years of breeding data from urban and forest populations of blue and great tits to understand whether selection for timing of breeding or clutch size differed between the two habitats and species. We found that urban great tits laid eggs earlier than their forest counterparts, but there was no evidence of a difference in selection for earlier breeding. Blue tits, however, did not differ in timing of egg laying between the two habitats, but selection for earlier laying was weaker in the urban environment. Both species laid smaller clutches in the urban site and had positive selection for larger clutch sizes which did not differ in strength for the great tits but did for blue tits, with weaker selection in the urban population. Our results suggest that food availability for nestlings may be constraining urban birds, and that the temporal cues females use to time breeding correctly, such as tree budburst and food availability, may be absent or reduced in urban areas due to lower caterpillar availability. These results have implications for our understanding of the adaptation of wild animals to city life. Significance statement Urbanisation is expanding rapidly and changing the environment many species live in. A key challenge is to understand how species adapt to the urban environment, why some species can adapt, why others cannot and what we can do to ensure that cities are ecologically sustainable and biodiversity rich. Here we show that the strength of natural selection for early breeding and larger clutch size is weaker in urban than non-urban blue tits, likely due to reduced and irregular availability of natural insect food in urban areas. This effect was not found in great tits. Thus, urbanisation can alter the selection pressures wild animals are exposed to, but this effect may differ between species, even when closely related. This has implications for our understanding of how species adapt to urban life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.