The laboratory diagnosis of heparin-induced thrombocytopenia (HIT) is based on an enzyme immunoassay combined with a functional test, and serotonin release assay (SRA) is the gold standard for detecting activating HIT antibodies. However, a recent atypical history of HIT prompted us to evaluate whether addition of platelet factor 4 (PF4) during SRA could improve its ability to detect pathogenic HIT antibodies. Using 5B9, a monoclonal antibody to PF4/H with a human Fc fragment, we first defined the optimal PF4 concentration for detecting low amounts of platelet-activating IgG with SRA. Plasma samples from 50 patients with suspected HIT were then studied, and SRA was positive in 17 cases (Group SRA ), with relatively high levels of PF4-specific IgG (median optical density = 2·66). SRA was also systematically performed after adding 10 μg/ml of PF4 in the reaction mixture, and significant serotonin release was measured with samples from 9 additional patients (Group PF4-SRA ). Importantly, levels of PF4-specific IgG were similar in these samples and those from the 24 persistently SRA negative patients. Moreover, the pre-test probability of HIT was intermediate/high in all 'SRA ' or 'SRA-PF4 ' patients. In conclusion, addition of exogenous PF4 might improve the detection of pathogenic HIT antibodies by SRA.
Background The diagnosis of heparin-induced thrombocytopenia (HIT) is based on clinical and biological criteria, but a standard is lacking for laboratory assays. Moreover, no humanized HIT antibody is available for pathophysiological studies. Objective To characterise 5B9, a chimeric monoclonal antibody, which fully mimics the effects of human HIT antibodies. Methods/Results 5B9, a chimeric anti-platelet factor 4/heparin complexes IgG1 antibody, was obtained after immunizing specific transgenic mice. 5B9 induced heparin FcγRIIA-dependent platelet aggregation and tissue factor mRNA synthesis in monocytes. It also induced significant thrombocytopenia and thrombin generation in mice expressing human PF4 and FcγRIIA receptors. The binding of 5B9 to PF4/H complexes was inhibited by 15 of 25 HIT plasma samples and only three of 25 samples containing non-pathogenic anti-PF4/H antibodies. KKO, a murine IgG2b HIT antibody, also inhibited the binding of 5B9 to PF4/H, suggesting that epitopes recognized by both antibodies are close. A docking analysis based on V and V sequences of 5B9 showed that binding of 5B9 Fab to PF4 involved 12 and 12 residues in B and D monomers, respectively, including seven previously identified as critical to the formation of a PF4/KKO complex. Two regions (Asp-7 to Thr-15 and Ala-32 to Thr-38) therefore appeared important for the binding of 5B9 and KKO on PF4 modified by heparin. Conclusions 5B9 is the first anti-PF4/H monoclonal antibody with a human Fc fragment, which induces similar cellular activation as HIT antibodies. Moreover, 5B9 binds epitopes within PF4 that are likely to be critical for the pathogenicity of HIT antibodies.
Heparin-induced thrombocytopenia (HIT) is due to immunoglobulin G (IgG) antibodies, which bind platelet factor 4 (PF4) modified by polyanions, such as heparin (H). IgG/PF4/polyanion complexes directly activate platelets via Fc gamma type 2 receptor A (FcγRIIA) receptors. A bacterial protease, IgG-degrading enzyme of Streptococcus pyogenes (IdeS), cleaves the hinge region of heavy-chain IgG, abolishing its ability to bind FcγR, including FcγRIIA. We evaluated whether cleavage of anti-PF4/H IgG by IdeS could suppress the pathogenicity of HIT antibodies. IdeS quickly cleaved purified 5B9, a monoclonal chimeric anti-PF4/H IgG1, which led to the formation of single cleaved 5B9 (sc5B9), without any reduction in binding ability to the PF4/H complex. However, as compared with uncleaved 5B9, the affinity of sc5B9 for platelet FcγRIIA was greatly reduced, and sc5B9 was also unable to induce heparin-dependent platelet activation. In addition, incubating IdeS in whole blood containing 5B9 or HIT plasma samples led to cleavage of anti-PF4/H antibodies, which fully abolished the ability to induce heparin-dependent platelet aggregation and tissue factor messenger RNA synthesis by monocytes. Also, when whole blood was perfused in von Willebrand factor–coated microfluidic channels, platelet aggregation and fibrin formation induced by 5B9 with heparin was strongly reduced after IdeS treatment. Finally, IdeS prevented thrombocytopenia and hypercoagulability induced by 5B9 with heparin in transgenic mice expressing human PF4 and FcγRIIA receptors. In conclusion, cleavage of anti-PF4/H IgG by IdeS abolishes heparin-dependent cellular activation induced by HIT antibodies. IdeS injection could be a potential treatment of patients with severe HIT.
The annual “Antibody Industrial Symposium”, co organized by LabEx MAbImprove, MabDesign and Polepharma, was held in Tours, France on June 27–28, 2017. The focus was on antibody-drug-conjugates (ADCs), new entities which realize the hope of Paul Ehrlich's magic bullet. ADCs result from the bioconjugation of a highly cytotoxic drug to a selective monoclonal antibody, which acts as a vector. Building on knowledge gained during the development of three approved ADCs, brentuximab vedotin (Adcetris®), ado trastuzumab emtansine (Kadcyla®) and inotuzumab ozogamicin (Besponsa®), and the many ADCs in development, this meeting addressed strategies and the latest innovations in the field from fundamental research to manufacturing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.