Dynamic change in subcellular localization of signaling proteins is a general concept that eukaryotic cells evolved for eliciting a coordinated response to stimuli. Mass spectrometry-based proteomics in combination with subcellular fractionation can provide comprehensive maps of spatio-temporal regulation of protein networks in cells, but involves laborious workflows that does not cover the phospho-proteome level. Here we present a high-throughput workflow based on sequential cell fractionation to profile the global proteome and phospho-proteome dynamics across six distinct subcellular fractions. We benchmark the workflow by studying spatio-temporal EGFR phospho-signaling dynamics in vitro in HeLa cells and in vivo in mouse tissues. Finally, we investigate the spatio-temporal stress signaling, revealing cellular relocation of ribosomal proteins in response to hypertonicity and muscle contraction. Proteomics data generated in this study can be explored through https://SpatialProteoDynamics.github.io.
In large-scale quantitative mass spectrometry (MS)-based phosphoproteomics, isobaric labeling with tandem mass tags (TMTs) coupled with offline high-pH reversedphase peptide chromatographic fractionation maximizes depth of coverage. To investigate to what extent limited sample amounts affect sensitivity and dynamic range of the analysis due to sample losses, we benchmarked TMT-based fractionation strategies against single-shot label-free quantification with spectral library-free data independent acquisition (LFQ-DIA), for different peptide input per sample. To systematically examine how peptide input amounts influence TMT-fractionation approaches in a phosphoproteomics workflow, we compared two different high-pH reversed-phase fractionation strategies, microflow (MF) and stage-tip fractionation (STF), while scaling the peptide input amount down from 12.5 to 1 µg per sample. Our results indicate that, for input amounts higher than 5 µg per sample, TMT labeling, followed by microflow fractionation (MF) and phospho-enrichment, achieves the deepest phosphoproteome coverage, even compared to single shot direct-DIA analysis. Conversely, STF of enriched phosphopeptides (STF) is optimal for lower amounts, below 5 µg/peptide per sample. As a result, we provide a decision tree to help phosphoproteomics users to choose the best workflow as a function of sample amount.
Achieving sufficient coverage of regulatory phosphorylation sites by mass spectrometry (MS)-based phosphoproteomics for signaling pathway reconstitution is challenging, especially when analyzing tiny sample amounts. To address this, we present a hybrid data-independent acquisition (DIA) strategy (hybrid-DIA) that combines targeted and discovery proteomics through an Application Programming Interface (API) to dynamically intercalate DIA scans with accurate triggering of multiplexed tandem mass spectrometry (MSx) scans of predefined (phospho)peptide targets. By spiking-in heavy stable isotope labeled phosphopeptide standards covering seven major signaling pathways, we benchmark hybrid-DIA against state-of-the-art targeted MS methods (i.e., SureQuant) using EGF-stimulated HeLa cells and find the quantitative accuracy and sensitivity to be comparable while hybrid-DIA also profiles the global phosphoproteome. To demonstrate the robustness, sensitivity, and biomedical potential of hybrid-DIA, we profile chemotherapeutic agents in single colon carcinoma multicellular spheroids and evaluate the phospho-signaling difference of cancer cells in 2D vs 3D culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.