We present a mathematical model for the surface-controlled dissolution of solid particles. This is applied to the dissolution of a solid having different particle size distribution functions: those of a monodispersed solid containing particles of all one size, a two-size-particle distribution, and a Gaussian distribution of the particle sizes. The dissolution of potassium bicarbonate in dimethylformamide is experimentally studied indirectly at elevated temperatures. We monitor the dissolution via the homogeneous deprotonation of 2-cyanophenol by dissolved KHCO3. The loss of 2-cyanophenol was detected electrochemically at a platinum microdisk electrode, and separately, the formation of the 2-cyanophenolate anion was monitored via UV-visible spectroscopic analysis. The results presented show that the kinetics of the loss of 2-cyanophenol behaves on one hand as a homogeneous chemical process and on the other hand as a dissolution-rate-controlled process. Initially, predissolved KHCO3 in solution deprotonates the 2-cyanophenol and homogeneous reaction dominates the observed kinetics, and at longer times, the observed kinetics is controlled by the rate of KHCO3 dissolution. Modeling of the experimental results for the surface-controlled dissolution of KHCO3 in dimethylformamide (DMF) yielded a mean value for the dissolution rate constant, k, at elevated temperatures; k was found to have a value of (1.1 +/- 0.3) x 10(-8) mol cm(-2) s(-1) at 100 degrees C, and the activation energy for the dissolution was 34.4 +/- 0.4 kJ mol(-1) over the temperature range 60-100 degrees C.
Understanding the mechanisms of solid-liquid systems is fundamental to the development and operation of processes for the production of agrochemicals and pharmaceuticals. The use of a strong inorganic base in an organic solvent, typically, potassium carbonate in dimethylformamide, is often used to facilitate the formation of a required anionic organic nucleophile. In this paper, the dissolution kinetics of potassium carbonate in dimethylformamide at elevated temperatures is studied in the presence of ultrasound, as revealed via monitoring of the deprotonation of 2-cyanophenol by dissolved K2CO3. Two independent experimental methods were employed; the loss of 2-cyanophenol was detected electrochemically at a platinum microdisk working electrode, and the formation of the 2-cyanophenolate anion was monitored via UV/visible spectroscopic analysis. The results were modeled by fitting the experimental data to a theoretical model for the surface-controlled dissolution of solid particles. The dissolution rate constant, k, for the dissolution of K2CO3 in DMF was found to have a value of (1.3 +/- 0.2) x 10(-7) mol cm(-2) s(-1) at 100 degrees C, and the activation energy for the dissolution was 44.2 +/- 0.4 kJ mol(-1) over the temperature range of 70-100 degrees C studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.