Computational studies on carboxylate-assisted C-H activation and functionalization at group 8-10 transition metal centers are reviewed. This Review is organized by metal and will cover work published from late 2009 until mid-2016. A brief overview of computational work prior to 2010 is also provided, and this outlines the understanding of carboxylate-assisted C-H activation in terms of the "ambiphilic metal-ligand assistance" (AMLA) and "concerted metalation deprotonation" (CMD) concepts. Computational studies are then surveyed in terms of the nature of the C-H bond being activated (C(sp)-H or C(sp)-H), the nature of the process involved (intramolecular with a directing group or intermolecular), and the context (stoichiometric C-H activation or within a variety of catalytic processes). This Review aims to emphasize the connection between computation and experiment and to highlight the contribution of computational chemistry to our understanding of catalytic C-H functionalization based on carboxylate-assisted C-H activation. Some opportunities where the interplay between computation and experiment may contribute further to the areas of catalytic C-H functionalization and applied computational chemistry are identified.
We have used dispersion-corrected DFT (DFT-D) together with solvation to examine possible mechanisms for reaction of PhX (X = Cl, Br, I) with Pd(P(t)Bu(3))(2) and compare our results to recently published kinetic data (F. Barrios-Landeros, B. P. Carrow and J. F. Hartwig, J. Am. Chem. Soc., 2009, 131, 8141-8154). The calculated activation free energies agree near-quantitatively with experimentally observed rate constants.
A seven‐membered N,N′‐heterocyclic potassium alumanyl nucleophile is introduced and utilised in the metathetical synthesis of Mg−Al and Ca−Al bonded derivatives. Both species have been characterised by experimental and theoretical means, allowing a rationalisation of the greater reactivity of the heavier group 2 species implied by an initial assay of their reactivity.
Kinetic analysis of the reaction of the copper(I) β-diketiminate [Cl(2)NN]Cu ([Cu(I)]) with (t)BuOO(t)Bu to give [Cu(II)]-O(t)Bu (1) reveals first-order behavior in each component implicating the formation of free (t)BuO(•) radicals. Added pyridine mildly inhibits this reaction indicating competition between (t)BuOO(t)Bu and py for coordination at [Cu(I)] prior to peroxide activation. Reaction of [Cu(I)] with dicumyl peroxide leads to [Cu(II)]-OCMe(2)Ph (3) and acetophenone suggesting the intermediacy of the PhMe(2)CO(•) radical. Computational methods provide insight into the activation of (t)BuOO(t)Bu at [Cu(I)]. The novel peroxide adduct [Cu(I)]((t)BuOO(t)Bu) (4) and the square planar [Cu(III)](O(t)Bu)(2) (5) were identified, each unstable toward loss of the (t)BuO(•) radical. Facile generation of the (t)BuO(•) radical is harnessed in the catalytic C-H etherification of cyclohexane with (t)BuOO(t)Bu at rt employing [Cu(I)] (5 mol %) to give the ether Cy-O(t)Bu in 60% yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.