We study the problem of fitting parametrized curves to noisy data. Under certain assumptions (known as Cartesian and radial functional models), we derive asymptotic expressions for the bias and the covariance matrix of the parameter estimates. We also extend Kanatani's version of the Cramer-Rao lower bound, which he proved for unbiased estimates only, to more general estimates that include many popular algorithms (most notably, the orthogonal least squares and algebraic fits). We then show that the gradient-weighted algebraic fit is statistically efficient and describe all other statistically efficient algebraic fits.
We study a popular algorithm for fitting polynomial curves to scattered data
based on the least squares with gradient weights. We show that sometimes this
algorithm admits a substantial reduction of complexity, and, furthermore, find
precise conditions under which this is possible. It turns out that this is,
indeed, possible when one fits circles but not ellipses or hyperbolas.Comment: 8 pages, no figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.