HighlightA huge variability in Cd tolerance and accumulation exist within A. halleri, and the relationship between tolerance, accumulation, and edaphic type is not straightforward. Cd-induced cell wall modifications suggest various shoot detoxification mechanisms.
Arabidopsis halleri is a model species for the study of plant adaptation to extreme metallic conditions. In this species, cadmium (Cd) tolerance seems to be constitutive, and the mechanisms underlying the trait are still poorly understood. A previous quantitative trait loci (QTL) analysis performed on A. halleri 3 Arabidopsis lyrata backcross population1 identified the metal-pump gene Heavy Metal ATPase4 as the major genetic determinant for Cd tolerance. However, although necessary, Heavy Metal ATPase4 alone is not sufficient for determining this trait. After fine mapping, a gene encoding a calcium 2+ /hydrogen + antiporter, cation/hydrogen + exchanger1 (CAX1), was identified as a candidate gene for the second QTL of Cd tolerance in A. halleri. Backcross population1 individuals displaying the A. halleri allele for the CAX1 locus exhibited significantly higher CAX1 expression levels compared with the ones with the A. lyrata allele, and a positive correlation between CAX1 expression and Cd tolerance was observed. Here, we show that this QTL is conditional and that it is only detectable at low external Ca concentration. CAX1 expression in both roots and shoots was higher in A. halleri than in the close Cd-sensitive relative species A. lyrata and Arabidopsis thaliana. Moreover, CAX1 loss of function in A. thaliana led to higher Cd sensitivity at low concentration of Ca, higher sensitivity to methylviologen, and stronger accumulation of reactive oxygen species after Cd treatment. Overall, this study identifies a unique genetic determinant of Cd tolerance in the metal hyperaccumulator A. halleri and offers a new twist for the function of CAX1 in plants.
Summary• We estimated the level of quantitative polymorphism for zinc (Zn) tolerance in neighboring metallicolous and nonmetallicolous populations of Arabidopsis halleri and tested the hypothesis that divergent selection has shaped this polymorphism.• A short-term hydroponic test was used to capture the quantitative polymorphism present between edaphic types, among and within populations. We measured six morphological and physiological traits on shoots and roots to estimate the response of A. halleri to Zn. In order to assess the adaptive value of Zn tolerance polymorphism, we compared differentiation of quantitative traits with that of molecular markers.• Zinc tolerance of metallicolous populations was, on average, higher than that of nonmetallicolous populations according to the morphological and physiological traits measured. Phenotypic variability within edaphic types was very high and mainly explained by polymorphism among individuals within populations. Genetic differentiation for photosystem II yield of leaves (a measure of photosynthetic efficiency) was greater than the differentiation for microsatellite and thus, probably shaped by divergent selection.• Overall, these results suggest that, in the sampled populations, Zn tolerance has been increased in metallicolous populations through selection on standing genetic variation within local nonmetallicolous ancestral populations.
Arabidopsis halleri is a model plant for Zn and Cd hyperaccumulation. The objective of this study was to determine the relationship between the chemical forms of Cd, its distribution in leaves, and Cd accumulation and tolerance. An interspecific cross was carried out between A. halleri and the non-tolerant and non-hyperaccumulating relative A. lyrata providing progenies segregating for Cd tolerance and accumulation. Cd speciation and distribution were investigated using X-ray absorption spectroscopy and microfocused X-ray fluorescence. In A. lyrata and non-tolerant progenies, Cd was coordinated by S atoms only or with a small contribution of O groups. Interestingly, the proportion of O ligands increased in A. halleri and tolerant progenies, and they were predominant in most of them, while S ligands were still present. Therefore, the binding of Cd with O ligands was associated with Cd tolerance. In A. halleri, Cd was mainly located in the xylem, phloem, and mesophyll tissue, suggesting a reallocation process for Cd within the plant. The distribution of the metal at the cell level was further discussed. In A. lyrata, the vascular bundles were also Cd enriched, but the epidermis was richer in Cd as compared with the mesophyll. Cd was identified in trichomes of both species. This work demonstrated that both Cd speciation and localization were related to the tolerance character of the plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.