Proteolytic processing of the transforming growth factor beta precursor (pro-TGF beta) is an essential step in the formation of the biologically active TGF beta homodimeric protein (TGF beta). The 361-amino-acid precursor pro-TGF beta 1 has within its primary structure the R-H-R-R processing signal found in many constitutively secreted precursor proteins and potentially recognized by members of the mammalian convertase family of endoproteases. To determine whether cleavage of pro-TGF beta 1 can be achieved by the furin convertase in vitro, purified precursor was incubated in the presence of a truncated/secreted form of the enzyme. Immunoblots showed that the 55-kDa pro-TGF beta 1 was converted into the 44 and 12.5 kDa bands corresponding to the pro-region and the mature monomer, respectively. Treatment of pro-TGF beta 1 with furin resulted in a 5-fold increase in the production of biologically active TGF beta 1. Furthermore, when expressed in the furin-deficient LoVo cells, no processing of pro-TGF beta 1 was observed. In contrast, efficient processing was observed when pro-TGF beta was coexpressed with the furin convertase. Collectively, these results provide evidence that in our experimental systems the TGF beta 1 precursor is efficiently and correctly processed by human furin thus permitting release of the biologically active peptide.
The hypoxia-inducible transcription factor-1 (HIF-1) is central to a number of pathological processes through the induction of specific genes such as vascular endothelial growth factor (VEGF). Even though HIF-1 is highly regulated by cellular oxygen levels, other elements of the inflammatory and tumor microenvironment were shown to influence its activity under normal oxygen concentration. Among others, recent studies indicated that transforming growth factor (TGF)  increases the expression of the regulatory HIF-1␣ subunit, and induces HIF-1 DNA binding activity. Here, we demonstrate that TGF acts on HIF-1␣ accumulation and activity by increasing HIF-1␣ protein stability. In particular, we demonstrate that TGF markedly and specifically decreases both mRNA and protein levels of a HIF-1␣-associated prolyl hydroxylase (PHD), PHD2, through the Smad signaling pathway. As a consequence, the degradation of HIF-1␣ was inhibited as determined by impaired degradation of a reporter protein containing the HIF-1␣ oxygen-dependent degradation domain encompassing the PHD-targeted prolines. Moreover, inhibition of the TGF1 converting enzyme, furin, resulted in increased PHD2 expression, and decreased basal HIF-1␣ and VEGF levels, suggesting that endogenous production of bioactive TGF1 efficiently regulates HIF-1-targeted genes. This was reinforced by results from HIF-1␣ knock-out or HIF-1␣-inhibited cells that show impairment in VEGF production in response to TGF. This study reveals a novel mechanism by which a growth factor controls HIF-1 stability, and thereby drives the expression of specific genes, through the regulation of PHD2 levels.
Transforming growth factor (TGF)-beta1 plays an essential role in cell growth and differentiation. It is also considered as a gatekeeper of immune homeostasis with gene disruption leading to autoimmune and inflammatory diseases. TGF-beta1 is produced as an inactive precursor polypeptide that can be efficiently secreted but correct proteolytic cleavage is an essential step for its activation. Assessment of the cleavage site has revealed a unique R-H-R-R sequence reminiscent of proprotein convertase (PC) recognition motifs and has previously demonstrated that this PC-like cleavage site is correctly cleaved by furin, a member of the PC family. Here we report that among PC members, furin more closely satisfies the requirements needed to fulfill the role of a genuine TGF-beta1 convertase. Even though six members of the PC family have the ability to cleave TGF-beta1, ectopic expression of alpha(1)-antitrypsin Portland (alpha(1)-AT-PDX), a potent furin inhibitor, blocked 80% of TGF-beta1 processing mediated by endogenous enzymes as demonstrated in an in vitro digestion assay. Genetic complementation of a furin-deficient LoVo cell line with the wild-type gene restores the production of mature and bioactivable TGF-beta1. Moreover, both furin and TGF-beta are coordinately expressed and regulated in vitro and in vivo in the hematopoietic and immune system, an important tissue target. These results demonstrate for the first time that furin is an authentic and adaptive TGF-beta1-converting enzyme whereas other members of the PC family might substitute or supplement furin activity. Our study advances our comprehension of the complexity of the TGF-beta system and should facilitate the development of therapeutically useful TGF-beta inhibitors.
Hypoxia is a common tumorigenesis enhancer, mostly owing to its impact on gene expression of many angiogenic and invasion-related mediators, some of which are natural substrates for the proprotein convertase furin. Analysis of furin promoters revealed the presence of putative binding sites for hypoxia-inducible factor-1 (HIF-1), a transcription complex that plays a pivotal role in cellular adaptation to hypoxia. In fact, we demonstrate herein that the levels of fur mRNA, encoding furin, are remarkably increased upon hypoxic challenge. Cotransfection of a HIF-1␣ dominant negative form in wild-type (WT) cells or transfection of a furin promoter-reporter gene in HIF-1-deficient cells indicated the requirement of HIF-1 for furin promoter activation by hypoxia. Direct HIF-1 action on the furin promoter was identified as a canonical hypoxia-responsive element site with enhancer capability. The hypoxic/ HIF-1 regulation of furin correlated with an increased proteolytic activation of the substrates membrane-type 1 matrix metalloproteinase and transforming growth factor-1. Our findings unveil a new facet of the physiological consequences of hypoxia/HIF-1, through enhanced furin-induced proteolytic processing/activation of proproteins known to be involved in tumorigenesis.
Furin, a predominant convertase of the cellular constitutive secretory pathway, is known to be involved in the maturation of a number of growth/differentiation factors, but the mechanisms governing its expression remain elusive. We have previously demonstrated that transforming growth factor (TGF) 1, through the activation of Smad transducers, regulates its own converting enzyme, furin, creating a unique activation/regulation loop of potential importance in a variety of cell fate and functions. Here we studied the involvement of the p42/p44 MAPK pathway in such regulation. Using HepG2 cells transfected with fur P1 LUC (luciferase) promoter construct, we observed that forced expression of a dominant negative mutant form of the small G protein p21 ras (RasN17) inhibited TGF1-induced fur gene transcription, suggesting the involvement of the p42/p44 MAPK cascade. In addition, TGF induced sustained activation/phosphorylation of endogenous p42/p44 MAPK. Further-more, the role of MAPK cascade in fur gene transcription was highlighted by the use of the MEK1/2 inhibitors, PD98059 or U0126, or co-expression of a p44 antisense construct that repressed the induction of fur promoter transactivation. Conversely, overexpression of a constitutively active form of MEK1 increased unstimulated, TGF1-stimulated, and Smad2-stimulated promoter P1 transactivation, and the universal Smad inhibitor, Smad7, inhibited this effect. Activation of Smad2 by MEK1 or TGF1 resulted in an enhanced nuclear localization of Smad2, which was inhibited upon blocking MEK1 activity. Our findings clearly show that the activation of the p42/p44 MAPK pathway is involved in fur gene expression and led us to propose a co-operative model whereby TGF1-induced receptor activation stimulates not only a Smad pathway but also a parallel p42/p44 MAPK pathway that targets Smad2 for an increased nuclear translocation and enhanced fur gene transactivation. Such an uncovered mechanism may be a key determinant for the regulation of furin in embryogenesis and growth-related physiopathological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.