A versatile, rapid and reversible approach to constrain peptides in a bioactive helical conformation and bearing a functional handle for inhibition of protein–protein interactions is described.
Metallophyte plants derived from phytoextraction are used as starting materials to prepare novel polymetallic catalysts. Polymetallic catalyst activity is used in many Lewis acid catalyzed reactions according to the polymetallic catalyst preparation. The synergetic catalysis of these systems leads to efficient syntheses of complex biomolecules such as dihydropyrimidinone, 5'-capped DNA and RNA, and glycosyl aminoacid. These new polymetallic catalysts also bring new possibilities in Green Catalysis, that we named "Ecological Catalysis".
A major current challenge in bioorganic chemistry is the identification of effective mimics of protein secondary structures that act as inhibitors of protein–protein interactions (PPIs). In this work, trans‐2‐aminocyclobutanecarboxylic acid (tACBC) was used as the key β‐amino acid component in the design of α/β/γ‐peptides to structurally mimic a native α‐helix. Suitably functionalized α/β/γ‐peptides assume an α‐helix‐mimicking 12,13‐helix conformation in solution, exhibit enhanced proteolytic stability in comparison to the wild‐type α‐peptide parent sequence from which they are derived, and act as selective inhibitors of the p53/hDM2 interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.