Streams play a key role in the global carbon cycle. The balance between carbon intake through photosynthesis and carbon release via respiration influences carbon emissions from streams and depends on temperature. However, the lack of a comprehensive analysis of the temperature sensitivity of the metabolic balance in inland waters across latitudes and local climate conditions hinders an accurate projection of carbon emissions in a warmer future. Here, we use a model of diel dissolved oxygen dynamics, combined with high-frequency measurements of dissolved oxygen, light and temperature, to estimate the temperature sensitivities of gross primary production and ecosystem respiration in streams across six biomes, from the tropics to the arctic tundra. We find that the change in metabolic balance, that is, the ratio of gross primary production to ecosystem respiration, is a function of stream temperature and current metabolic balance. Applying this relationship to the global compilation of stream metabolism data, we find that a 1 °C increase in stream temperature leads to a convergence of metabolic balance and to a 23.6% overall decline in net ecosystem productivity across the streams studied. We suggest that if the relationship holds for similarly sized streams around the globe, the warming-induced shifts in metabolic balance will result in an increase of 0.0194 Pg carbon emitted from such streams every year.
Abstract. Whole-ecosystem metabolism is an important indicator of the role of organic matter, C cycling, and trophic structure in rivers. Ecosystem metabolism is well studied in small streams, but less is known about metabolism in large rivers. We estimated daily whole-ecosystem metabolism over 2 y for 1 site each at the Mississippi and Chattahoochee Rivers in the USA to understand factors influencing temporal patterns of ecosystem metabolism. We estimated rates of gross primary production (GPP), community respiration (CR), and net ecosystem production (NEP) with a curve-fitting approach with publicly available discharge (Q), dissolved O 2 , temperature, and photosynthetically active radiation (PAR) data. Models were run for week-long blocks, and power analyses suggested that rates should be established at least once for each 10-wk period throughout the year to characterize annual rates of metabolism accurately in these 2 rivers. We analyzed weekly rates averaged over
Forested riparian buffers are recommended to mitigate negative effects of forest harvesting on recipient freshwater ecosystems. Most of the current best practices of riparian buffer retention aim at larger streams. Riparian protection along small streams is thought to be lacking; however, it is not well documented. We surveyed 286 small streams flowing through recent clearcuts in three timber-producing jurisdictions-British Columbia, Canada (BC), Finland, and Sweden. The three jurisdictions differed in riparian buffer implementation. In BC, forested buffers are not required on the smallest streams, and 45% of the sites in BC had no buffer. The average (±SE) width of voluntarily retained buffers was 15.9 m (±2.1) on each side of the stream. An operation-free zone is mandatory around the smallest streams in BC, and 90% of the sites fulfilled these criteria. Finland and Sweden had buffers allocated to most of the surveyed streams, with average buffer width of 15.3 m (±1.4) in Finland and 4 m (±0.4) in Sweden. Most of the streams in the two Nordic countries had additional forestry-associated impairments such as machine tracks, or soil preparation within the riparian zone. Riparian buffer width somewhat increased with stream size and slope of the riparian area, however, not in all investigated regions. We concluded that the majority of the streams surveyed in this study are insufficiently protected. We suggest that a monitoring of forestry practices and revising present forestry guidelines is needed in order to increase the protection of our smallest water courses. The effectiveness of riparian buffers depends on a number of factors such as the conditions of the buffer (e.g., width, forest structure and composition, and level of tree retention), the properties of adjacent harvested areas, and the properties of the streams themselves (Kreutzweiser et al., 2010; Lidman et al., 2017; Richardson et al., 2012). Stream properties vary across the fluvial network as they are related to stream size and network position. For example, headwater streams (the smallest streams in the network) usually differ from higher order streams into which they flow in topographical, hydrological, and ecological aspects, including gradient, discharge, and/or dominant sources of water, and riparian vegetation (
Secondary production, the growth of new heterotrophic biomass, is a key process in aquatic and terrestrial ecosystems that has been carefully measured in many flowing water ecosystems. We combine structural equation modeling with the first worldwide dataset on annual secondary production of stream invertebrate communities to reveal core pathways linking air temperature and precipitation to secondary production. In the United States, where the most extensive set of secondary production estimates and covariate data were available, we show that precipitation-mediated, low–stream flow events have a strong negative effect on secondary production. At larger scales (United States, Europe, Central America, and Pacific), we demonstrate the significance of a positive two-step pathway from air to water temperature to increasing secondary production. Our results provide insights into the potential effects of climate change on secondary production and demonstrate a modeling framework that can be applied across ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.