Detection of enzyme biomarkers originating from either bio-fluids or contaminating microorganisms is of utmost importance in clinical diagnostics and food safety. Herein, we present a simple, low-cost and easy-to-use sensing approach based on the switchable peroxidase-mimicking activity of plasmonic gold nanoparticles (AuNPs) that can catalyse for the oxidation of 3,3',5'5-tetramethylbenzidine (TMB) for the determination of protease enzyme. The AuNP surface is modified with casein, showing dual functionalities. The first function of the coating molecule is to suppress the intrinsic peroxidase-mimicking activity of AuNPs by up to 77.1%, due to surface shielding effects. Secondly, casein also functions as recognition sites for the enzyme biomarker. In the presence of protease, the enzyme binds to and catalyses the degradation of the coating layer on the AuNP surface, resulting in the recovery of peroxidase-mimicking activity. This is shown visually in the development of a blue colored product (oxidised TMB) or spectroscopically as an increase in absorbance at 370 and 650 nm. This mechanism allows for the detection of protease at 44 ng•mL −1 in 90 min. The nanosensor circumvents issues associated with current methods of detection in terms of ease of use, compatibility with point-of-care testing, low-cost production and short analysis time. The sensing approach has also been applied for the detection of protease spiked in ultra-heat treated (UHT) milk and synthetic human urine samples at a limit of detection of 490 and 176 ng•mL −1 , respectively, showing great potential in clinical diagnostics, food safety and quality control.
The development of an ultrasensitive biosensor for the low-cost and on-site detection of pathogenic DNA could transform detection capabilities within food safety, environmental monitoring and clinical diagnosis. Herein, we present an innovative approach exploiting endonuclease-controlled aggregation of plasmonic gold nanoparticles (AuNPs) for label-free and ultrasensitive detection of bacterial DNA. The method utilizes RNA-functionalized AuNPs which form DNA-RNA heteroduplex structures through specific hybridization with target DNA. Once formed, the DNA-RNA heteroduplex is susceptible to RNAse H enzymatic cleavage of the RNA probe, allowing the target DNA to liberate and hybridize with another RNA probe. This continuously happens until all of the RNA probes are cleaved, leaving the nanoparticles unprotected and thus aggregated upon exposure to a high electrolytic medium. The assay is ultrasensitive, allowing the detection of target DNA at femtomolar level by simple spectroscopic analysis (40.7 fM and 2.45fM as measured by UV-vis and dynamic light scattering (DLS), respectively). The target DNA spiked food matrix (chicken meat) is also successfully detected at a concentration of 1.2pM (by UV-vis) or 18.0fM (by DLS). In addition to the ultra-high sensitivity, the total analysis time of the assay is less than 3h, thus demonstrating its practicality for food analysis.
Mercury (Hg) is extremely toxic, and continues to cause major threats to aquatic life, human health and the environment. Hg 2+ mainly derives from seawater as a product of atmospheric deposition, therefore there is great demand for sensing approaches that can detect Hg 2+ in seawater samples. Herein, we demonstrate that the peroxidase-mimicking activity of gold nanoparticles (AuNPs) or so-called nanozymes, can be exploited for the detection of Hg 2+ ions in various water samples. In a high electrolyte environment, the catalytic activity for the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) was significantly diminished due to poor stability of the bare-AuNPs. This activity was reduced by ~ 73.7% when the NaCl concentration was higher than 1.168%, which is much lower than that of seawater (~ 3.5%), thus presenting its unsuitability for detecting Hg 2+ in harsh water matrices. To overcome this limitation, AuNPs were first functionalized with oligo-ethylene glycol (OEG), of which their colloidal form presented high stability in NaCl concentrations up to 20% and across a wide range of pHs from 1-14. Interestingly, the catalytic activity of OEG-AuNPs for the oxidation of TMB was strongly suppressed by the coating, but enhanced upon formation of Au-Hg amalgamation. This novel finding underlies a straightforward, sensitive, and highly selective detection platform for Hg 2+ in water samples. The approach could detect the exposure limit level for Hg 2+ in drinking water (i.e., 2 ppb for tap and bottled water) as set by the United States Environmental Protection Agency (EPA) and the World Health Organization (WHO). When Hg 2+ was spiked into a 3.5% saline solution and a coastal seawater certified reference material (CRM), the detection limits were found to be 10 and 13 ppb, respectively, which exceed the Hg 2+ concentrations commonly found within seawater (~ 60-80 ppb). The whole procedure takes less than 45 min to conduct, providing a highly innovative, rapid and low-cost approach for detecting Hg 2+ in complex water matrices.
This study assesses the application of a handheld, near infrared spectroscopy (NIRS) device, namely the NeoSpectra Micro, for the determination of oregano authenticity. Utilising a large sample set of oregano ( n = 295) and potential adulterants of oregano ( n = 109), models were developed and validated using SIMCA 15 software. The models demonstrated excellent predictability for the determination of authentic oregano and adulterant samples. The optimal model resulted in a 93.0% and 97.5% correct prediction for oregano and adulterants, respectively. Different standardisation approaches were assessed to determine model transferability to a second NIRS device. In the case of the second device, the best predictions were achieved with data that had not undergone any spectral standardisation (raw). Subsequently, the optimal model was able to correctly predict 90% of authentic oregano samples and 100% of the adulterant samples on the second device. This study demonstrates the potential of the device to be used as a simple, cost effective, reliable and handheld screening tool for the determination of oregano authenticity, at various stages of the food supply chain. It is believed that such forms of monitoring could be highly beneficial in other areas of food authenticity analysis to help combat the negative economical and health implications of food fraud.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.