Because motor vehicle crashes have decreased during the last decade in many countries in the world and are more diffuse, local authorities have difficulties to define road safety policies. An experiment with 51 cars of public fleets equipped with a specific Event Data Recorder was carried out in France during one year. The purposes of this research were to evaluate if incident data (critical driving situations) help to understand crashes, and to explore a new way for road infrastructure safety diagnosis. The analysis of 339 genuine incidents and 1237 simple events recorded illustrates the potentiality of such an experiment and provides: some insights about conditions in which incidents occur, a general overview of their distribution according to different road layouts, as well as information on the different levels of accelerations reached. It can be noticed that there is an overrepresentation of incidents in right curves compared to left curves. The simple events involving mostly the infrastructure could be used to detect road defects. Genuine incidents where the vehicle is subjected to important dynamic demands, related to potentially unsafe driving situations, can be used to improve knowledge of the motor vehicle crashes thanks to incident mechanisms analysis.
In the event of a road accident, a quick intervention is crucial. The mobile emergency services take care of patients whose condition requires an emergency repatriation to a hospital, by land in an ambulance or by air in a helicopter. The main criteria for choosing the means of transport are the time required for repatriation and the patient’s more or less critical state of health. Do the vehicle dynamic effects endured by the transported patient have an influence on their health condition? Vehicle dynamics data were recorded with a road data recorder for a period of 3 months, under real conditions of patient repatriation to a hospital; 39 trips were recorded by ambulance and 29 trips by helicopter. Significant differences in speed (average 42 versus 202 km/h) and distance travelled (average 23 versus 85 km) were observed. The sustained effects are similar in helicopters and ambulances. The ambulance causes more abrupt variations in longitudinal and transversal directions, whereas the helicopter has more variations in vertical direction. The vibration level in helicopters is higher than in ambulances. These results can be considered as a first reference baseline for establishing a characterization of transported patients’ exposure to vehicle dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.