Humans engagement in music rests on underlying elements such as the listeners’ cultural background and interest in music. These factors modulate how listeners anticipate musical events, a process inducing instantaneous neural responses as the music confronts these expectations. Measuring such neural correlates would represent a direct window into high-level brain processing. Here we recorded cortical signals as participants listened to Bach melodies. We assessed the relative contributions of acoustic versus melodic components of the music to the neural signal. Melodic features included information on pitch progressions and their tempo, which were extracted from a predictive model of musical structure based on Markov chains. We related the music to brain activity with temporal response functions demonstrating, for the first time, distinct cortical encoding of pitch and note-onset expectations during naturalistic music listening. This encoding was most pronounced at response latencies up to 350 ms, and in both planum temporale and Heschl’s gyrus.
A perceptual phenomenon is reported, whereby prior acoustic context has a large, rapid and long-lasting effect on a basic auditory judgement. Pairs of tones were devised to include ambiguous transitions between frequency components, such that listeners were equally likely to report an upward or downward ‘pitch' shift between tones. We show that presenting context tones before the ambiguous pair almost fully determines the perceived direction of shift. The context effect generalizes to a wide range of temporal and spectral scales, encompassing the characteristics of most realistic auditory scenes. Magnetoencephalographic recordings show that a relative reduction in neural responsivity is correlated to the behavioural effect. Finally, a computational model reproduces behavioural results, by implementing a simple constraint of continuity for binding successive sounds in a probabilistic manner. Contextual processing, mediated by ubiquitous neural mechanisms such as adaptation, may be crucial to track complex sound sources over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.