Mutation of the K-ras gene is one of the most common genetic alterations in solid tumors, including colorectal cancer. The relatively late emergence of K-ras mutations in colorectal cancer is particularly striking in the class of mismatch repair-deficient tumors associated with earlyonset microsatellite instability. We, therefore, tested the hypothesis that the microsatellite instability phenotype itself does not efficiently trigger K-ras mutations in colorectal cancer cells, but rather that tumor-associated microenvironmental conditions (e.g., hypoxia and hypoglycemia) contribute to this event by modulating genetic instability. We examined K-ras G13D mutation using PCR-RFLP analysis in two different microsatellite instability colorectal cancer cell lines (HCT116 and DLD-1) and their variants in which the mutant (but not the wild-type) K-ras allele has been genetically disrupted (Hkh-2 and Dks-8). We found K-ras G13D mutation to occur at far greater incidence in cells derived from xenografted tumors or exposed to conditions of combined hypoxia and hypoglycemia in vitro . Interestingly, this mutagenesis was neither enhanced by induced oxidative damage nor prevented by the antioxidant vitamin E. Moreover, the accumulation of K-ras mutations was paralleled by down-regulation of the key mismatch repair protein MSH2 in xenografted tumors, particularly in hypoperfused areas and under hypoglycemic conditions (in vitro). In contrast, the microsatellite stable colorectal cancer cell line Caco-2 neither accumulated K-ras mutations nor showed down-regulation of MSH2 under these conditions. Thus, our study suggests that ischemia may not simply select for, but can actually trigger, increased mutation rate in crucial colorectal cancer oncoproteins. This finding establishes a novel linkage between genetic instability, tumor ischemia, and genetic tumor progression and carries important implications for applying anticancer therapies involving tumor hypoxia (e.g., antiangiogenesis) in microsatellite instability cancers. (Cancer Res 2005; 65(18): 8134-41)
Dysregulation or mislocalization of cell adhesion molecules and their regulators, such as E-cadherin, beta-catenin, and alpha-catenin, usually correlates with loss of polarity, dedifferentiation, invasive tumor growth, and metastasis. A subpopulation of alpha-catenin-negative cells within the DLD-1 colorectal carcinoma cell line causes it to display a heterogeneous morphological makeup, thus providing an excellent model system in which to investigate the role of alpha-catenin in tumorigenesis. We re-established expression of alpha-catenin protein in an alpha-catenin-deficient subpopulation of the DLD-1 cell line and used it to demonstrate that loss of alpha-catenin resulted in increased in vitro tumorigenic characteristics (increased soft agarose colony formation, clonogenic survival after suspension, and survival in suspension). When the cells were used to form tumor xenografts, those lacking alpha-catenin showed faster growth rates because of increased cellular cycling but not increased tumor microvascular recruitment. alpha-Catenin-expressing cells were preferentially located in well perfused areas of xenografts when tumors were formed from mixed alpha-catenin-positive and -negative cells. We therefore evaluated the role of the ischemic tumor microenvironment on alpha-catenin expression and demonstrated that cells lose expression of alpha-catenin after prolonged exposure in vitro to hypoglycemic conditions. Our findings illustrate that the tumor microenvironment is a potent modulator of tumor suppressor expression, which has implications for localized nutrient deficiency and ischemia-induced cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.