Programme Hospitalier Recherche Clinique, Institut Pasteur, Inserm, French Public Health Agency.
SummaryStreptococcus agalactiae is a commensal bacterium colonizing the intestinal tract of a significant proportion of the human population. However, it is also a pathogen which is the leading cause of invasive infections in neonates and causes septicaemia, meningitis and pneumonia. We sequenced the genome of the serogroup III strain NEM316, responsible for a fatal case of septicaemia. The genome is 2 211 485 base pairs long and contains 2118 protein coding genes. Fifty-five per cent of the predicted genes have an ortholog in the Streptococcus pyogenes genome, representing a conserved backbone between these two streptococci. Among the genes in S. agalactiae that lack an ortholog in S. pyogenes , 50% are clustered within 14 islands. These islands contain known and putative virulence genes, mostly encoding surface proteins as well as a number of genes related to mobile elements. Some of these islands could therefore be considered as pathogenicity islands. Compared with other pathogenic streptococci, S. agalactiae shows the unique feature that pathogenicity islands may have an important role in virulence acquisition and in genetic diversity.
On the basis of our time-resolved absorption measurements of hemoglobin (Hb), myoglobin (Mb), and protoheme (PTH), either unligated or ligated with CO, O2, or NO, we propose a description of the photophysics of heme proteins that encompasses their photodissociation, the origin and fate of the observed short-lived transients, and the appearance of the ground-state, unligated heme proteins. Two distinct species are formed upon ligand photodissociation, which occurs in less than 50 fs. We assign these species to excited states of the unligated heme and label them (for the case of hemoglobin) as Hb*I and Hb*II. We suggest that Hb*I is already at least partially domed and has a spin state of at least S = 1. Hb*I decays in 300 fs to the ground-state unligated heme species, which we consider to be S = 2 and at least partially domed. The population of Hb*II varies with the ligand. It is more significant when the ligand is O2 or NO than when the ligand is CO. The similarities of the picosecond and femtosecond bleaching and absorption kinetics of HbCO with those of PTHCO (and of HbNO with those of PTHNO) indicate that in this time domain the importance of steric features of the protein are less important than the nature of the ligand itself in the geminate recombination process as well as in the relative amounts of the two heme excited states created. It is suggested that the quantum yield of ligand photodissociation is unity whether the ligand is O2, NO, or CO. The low yield of photodissociated heme-O2 or heme-NO compounds as measured on the microsecond time scale is thus attributed to a fast (2.5 ps) recombination of O2 or NO with Hb*II. We discuss geminate recombination measurements of cyanomet hybrid hemoglobins with NO and consider these results in terms of alpha and beta subunit heterogeneity. The first picosecond transient absorption spectra of cyanomet-CO hybrid hemoglobins are presented and are compared with the spectra of other heme compounds. The superimposability of the transient spectra on the equilibrium spectra of heme compounds that exhibit minimal or no cooperativity is noted and is compared with the case of cooperative systems where the transient spectra are distorted with respect to the equilibrium spectra. This distortion is interpreted in terms of an interaction of a domed heme with the F helix.
SummaryStreptococcus agalactiae [group B streptococcus (GBS)] is the leading cause of neonatal pneumonia, sepsis and meningitis. An in silico genome analysis indicated that GBS strain NEM316 encodes five putative sortases, including the major class A sortase enzyme and four class C sortases. The genes encoding the class C sortases are tandemly arranged in two different loci, srtC1-C2 and srtC3-C4 , with a similar genetic organization and are thought to be involved in pilus biosynthesis. Each pair of sortase genes is flanked by LPXTG protein encoding genes, two upstream and one downstream, and a divergently transcribed regulatory gene located upstream from this locus. We demonstrated that strain NEM316 expresses only the srtC3-C4 locus, which encodes three surface proteins (Gbs1474, Gbs1477 and Gbs1478) that polymerize to form appendages resembling pili. Structural and functional analysis of this locus revealed that: (i) the transcriptional activator RogB is required for expression of the srtC3-C4 operon; (ii) Gbs1477, and either SrtC3 or SrtC4 are absolutely required for pilus biogenesis; and (iii) GBS NEM316 pili are composed of three surface proteins, Gbs1477, the bona fide pilin which is the major component, Gbs1474, a minor associated component, and Gbs1478, a pilus-associated adhesin. Surprisingly, pilus-like structures can be formed in the absence of the two minor components, i.e. the putative anchor Gbs1474 or the adhesin Gbs1478. Adherence assays showed that Gbs1478 confers adhesive capacity to the pilus. This study provides the first evidence that adhesive pili are also present in Grampositive pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.