The low power consumption of electrochromism makes it widely used in actively shaded windows and mirrors, while flexible versions are attractive for use in wearable devices. Initial demonstration of stretchable electrochromic elements promises good conformability to complex surfaces. Here, fully integrated intrinsically stretchable electrochromic devices are demonstrated as single elements and 3 × 3 displays. Conductive and electrochromic ionic liquid-doped poly(3,4-ethylenedioxythiophene) polystyrene sulfonate is combined with poly(vinyl alcohol)-based electrolyte to form complete cells. A transmission change of 15% is demonstrated, along with a reflectance change of 25% for opaque reflective devices, with <7 s switching time, even under 30% strain. Stability under both electrochemical and mechanical strain cycling is demonstrated. A passive matrix display exhibits addressability and low cross-talk under strain. Comparable optical performance to flexible electrochromics and higher deformability provide attractive qualities for use in wearable, biometric monitoring, and robotic skin devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.