The regulation of pesticides in the European Union (EU) relies on a network of hard law (legislation and implementing acts) and soft law (non-legally binding guidance documents and administrative and scientific practices). Both hard and soft laws govern how risk assessments are conducted, but a significant role is left to the latter. Europe’s pesticide regulation is one of the most stringent in the world. Its stated objectives are to ensure an independent, objective and transparent assessment of pesticides and achieve a high level of protection for health and environment. However, a growing body of evidence shows that pesticides that have passed through this process and are authorised for use may harm humans, animals and the environment. The authors of the current paper – experts in toxicology, law and policy – identified shortcomings in the authorisation process, focusing on the EU assessment of the pesticide active substance glyphosate. The shortcomings mostly consist of failures to implement the hard or soft laws. But in some instances the law itself is responsible, as some provisions can only fail to achieve its objectives. Ways to improve the system are proposed, requiring changes in hard and soft laws as well as in administrative and scientific practices.
The present paper scrutinises the European authorities’ assessment of the carcinogenic hazard posed by glyphosate based on Regulation (EC) 1272/2008. We use the authorities’ own criteria as a benchmark to analyse their weight of evidence (WoE) approach. Therefore, our analysis goes beyond the comparison of the assessments made by the European Food Safety Authority and the International Agency for Research on Cancer published by others. We show that not classifying glyphosate as a carcinogen by the European authorities, including the European Chemicals Agency, appears to be not consistent with, and in some instances, a direct violation of the applicable guidance and guideline documents. In particular, we criticise an arbitrary attenuation by the authorities of the power of statistical analyses; their disregard of existing dose–response relationships; their unjustified claim that the doses used in the mouse carcinogenicity studies were too high and their contention that the carcinogenic effects were not reproducible by focusing on quantitative and neglecting qualitative reproducibility. Further aspects incorrectly used were historical control data, multisite responses and progression of lesions to malignancy. Contrary to the authorities’ evaluations, proper application of statistical methods and WoE criteria inevitably leads to the conclusion that glyphosate is ‘probably carcinogenic’ (corresponding to category 1B in the European Union).
There are abundant modern experimental methods (and rigorous epidemiology), and an existing systematic review system, to at long last allow academia's toxicity studies to be used in most risk assessments.
Chemotherapeutic agents lead to the damage of healthy cells because they react with cells which are dividing at a high rate by inhibiting the DNA synthesis and interfering with the process of cell division. "Therapeutic drug delivery allows for an increase in the efficacy of the chemotherapeutic agent while minimizing the interaction with nontumour sites in the body by controlling the release rate of the therapeutic agent and having targeted sites on the nanoparticle which will allow the nanoparticle to release its contents at targeted sites." There are three main methods of creating nanocarriers for drug delivery that will be consider in this paper, nanoprecipitation, single emulsion and double emulsion. N Single emulsion is the formation of nanoparticles through oil in water emulsion. Another way to decrease the toxic effect of the drug loaded nanoparticle on the cells is by having specific ligands attached to the nanoparticle that specifically targets a cancer cells or have magnetic particles that one can move to the area where the tumour is located by using a magnet
The election of New Labour in 1997 gave fresh impetus to the regeneration and community engagement agendas, and these are clearly central pillars in the Government's drive for sustainable communities. As major institutions in many towns and cities, universities can potentially play a major role in the development of our urban areas and make a significant contribution to the creation of sustainable communities. This paper examines the contribution of universities to urban regeneration and to local communities in England. Whilst there have been numerous case studies assessing the impact of specific universities on local and regional economies and wider research on the impact of universities on the national economy, there has generally been little attention given to their contribution to wider regeneration aims. Rather than adopting a case study approach, the research has focused on a nationwide survey generating quantitative and qualitative data to assess how universities perceive their role within this wider context, the extent to which they have become involved in such initiatives and possible barriers to such involvement. The research indicates that whilst many universities in England have been involved in regeneration and community initiatives, there is potential for more substantial and influential involvement, which could have significant benefits for the country's deprived areas and communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.