The present study investigated whether muscular monocarboxylate transporter (MCT) 1 and 4 contents are related to the blood lactate removal after supramaximal exercise, fatigue indexes measured during different supramaximal exercises, and muscle oxidative parameters in 15 humans with different training status. Lactate recovery curves were obtained after a 1-min all-out exercise. A biexponential time function was then used to determine the velocity constant of the slow phase (gamma(2)), which denoted the blood lactate removal ability. Fatigue indexes were calculated during 1-min all-out (FI(AO)) and repeated 10-s (FI(Sprint)) cycling sprints. Biopsies were taken from the vastus lateralis muscle. MCT1 and MCT4 contents were quantified by Western blots, and maximal muscle oxidative capacity (V(max)) was evaluated with pyruvate + malate and glutamate + malate as substrates. The results showed that the blood lactate removal ability (i.e., gamma(2)) after a 1-min all-out test was significantly related to MCT1 content (r = 0.70, P < 0.01) but not to MCT4 (r = 0.50, P > 0.05). However, greater MCT1 and MCT4 contents were negatively related with a reduction of blood lactate concentration at the end of 1-min all-out exercise (r = -0.56, and r = -0.61, P < 0.05, respectively). Among skeletal muscle oxidative indexes, we only found a relationship between MCT1 and glutamate + malate V(max) (r = 0.63, P < 0.05). Furthermore, MCT1 content, but not MCT4, was inversely related to FI(AO) (r = -0.54, P < 0.05) and FI(Sprint) (r = -0.58, P < 0.05). We concluded that skeletal muscle MCT1 expression was associated with the velocity constant of net blood lactate removal after a 1-min all-out test and with the fatigue indexes. It is proposed that MCT1 expression may be important for blood lactate removal after supramaximal exercise based on the existence of lactate shuttles and, in turn, in favor of a better tolerance to muscle fatigue.
The present study investigated whether blood lactate removal after supramaximal exercise and fatigue indexes measured during continuous and intermittent supramaximal exercises are related to the maximal muscle oxidative capacity in humans with different training status. Lactate recovery curves were obtained after a 1-min all-out exercise. A biexponential time function was then used to determine the velocity constant of the slow phase (gamma(2)), which denoted the blood lactate removal ability. Fatigue indexes were calculated during all-out (FI(AO)) and repeated 10-s cycling sprints (FI(Sprint)). Biopsies were taken from the vastus lateralis muscle, and maximal ADP-stimulated mitochondrial respiration (V(max)) was evaluated in an oxygraph cell on saponin-permeabilized muscle fibers with pyruvate + malate and glutamate + malate as substrates. Significant relationships were found between gamma(2) and pyruvate + malate V(max) (r = 0.60, P < 0.05), gamma(2) and glutamate + malate V(max) (r = 0.66, P < 0.01), and gamma(2) and citrate synthase activity (r = 0.76, P < 0.01). In addition, gamma(2), glutamate + malate V(max), and pyruvate + malate V(max) were related to FI(AO) (gamma(2) - FI(AO): r = 0.85; P < 0.01; glutamate + malate V(max) - FI(AO): r = 0.70, P < 0.01; and pyruvate + malate V(max) - FI(AO): r = 0.63, P < 0.01) and FI(Sprint) (gamma(2) - FI(Sprint): r = 0.74, P < 0.01; glutamate + malate V(max) - FI(Sprint): r = 0.64, P < 0.01; and pyruvate + malate V(max) - FI(Sprint): r = 0.46, P < 0.01). In conclusion, these results suggested that the maximal muscle oxidative capacity was related to blood lactate removal ability after a 1-min all-out test. Moreover, maximal muscle oxidative capacity and blood lactate removal ability were associated with the delay in the fatigue observed during continuous and intermittent supramaximal exercises in well-trained subjects.
Two lactate/proton cotransporter isoforms (monocarboxylate transporters, MCT1 and MCT4) are present in the plasma (sarcolemmal) membranes of skeletal muscle. Both isoforms are symports and are involved in both muscle pH and lactate regulation. Accordingly, sarcolemmal MCT isoform expression may play an important role in exercise performance. Acute exercise alters human MCT content, within the first 24 h from the onset of exercise. The regulation of MCT protein expression is complex after acute exercise, since there is not a simple concordance between changes in mRNA abundance and protein levels. In general, exercise produces greater increases in MCT1 than in MCT4 content. Chronic exercise also affects MCT1 and MCT4 content, regardless of the initial fitness of subjects. On the basis of cross-sectional studies, intensity would appear to be the most important factor regulating exercise-induced changes in MCT content. Regulation of skeletal muscle MCT1 and MCT4 content by a variety of stimuli inducing an elevation of lactate level (exercise, hypoxia, nutrition, metabolic perturbations) has been demonstrated. Dissociation between the regulation of MCT content and lactate transport activity has been reported in a number of studies, and changes in MCT content are more common in response to contractile activity, whereas changes in lactate transport capacity typically occur in response to changes in metabolic pathways. Muscle MCT expression is involved in, but is not the sole determinant of, muscle H(+) and lactate anion exchange during physical activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.