Strains carrying rna14.1 and rna15.2 mutations are defective in pre-mRNA 3' cleavage, polyadenylation, and transcription termination. Long extended read-through transcripts generated in rna14.1 and rna15.2 strains are greatly stabilized by depletion of Rrp41p, a core component of the exosome complex or the RNA helicase Dob1p/Mtr4p. The absence of the nuclear-specific exosome component, Rrp6p, from the rna14.1 strain gave a very different phenotype. Short polyadenylated pre-mRNAs were strongly stabilized, and these were functional for translation. Production of these mRNAs was suppressed by depletion of Rrp41p, indicating that they are the products of exosome processing followed by uncoupled polyadenylation. The balance between complete degradation of 3'-unprocessed pre-mRNAs and their processing to functional mRNAs is regulated, with degradation favored on glucose media.
C.Ganem and F.Devaux contributed equally to this workSsu72 is an essential yeast protein that is involved in transcription. It physically interacts with transcription initiation and termination complexes. In this report, we provide evidence that Ssu72 is a phosphatase that physically interacts with the CTD kinase Kin28 and functionally interacts with the CTD phosphatase Fcp1. A genome-wide expression analysis of mutant ssu72-ts69 during growth in complete medium revealed a number of defects, including the accumulation of a limited number of mRNAs and the readthrough transcription of small nucleolar RNAs and of some mRNAs. We hypothesize that Ssu72 plays a key role in the transcription termination of certain transcripts, possibly by promoting RNA polymerase pausing and release. The possibility that the CTD of the largest subunit of RNA polymerase II is a substrate of Ssu72 is discussed.
The pap1-5 mutation in poly(A) polymerase causes rapid depletion of mRNAs at restrictive temperatures. Residual mRNAs are polyadenylated, indicating that Pap1-5p retains at least partial activity. In pap1-5 strains lacking Rrp6p, a nucleus-specific component of the exosome complex of 3-5 exonucleases, accumulation of poly(A)؉ mRNA was largely restored and growth was improved. The catalytically inactive mutant Rrp6-1p did not increase growth of the pap1-5 strain and conferred much less mRNA stabilization than rrp6⌬. This may indicate that the major function of Rrp6p is in RNA surveillance. Inactivation of core exosome components, Rrp41p and Mtr3p, or the nuclear RNA helicase Mtr4p gave different phenotypes, with accumulation of deadenylated and 3-truncated mRNAs. We speculate that slowed mRNA polyadenylation in the pap1-5 strain is detected by a surveillance activity of Rrp6p, triggering rapid deadenylation and exosome-mediated degradation. In wild-type strains, assembly of the cleavage and polyadenylation complex might be suboptimal at cryptic polyadenylation sites, causing slowed polyadenylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.