Background Epigenetics refers to inheritable phenotypic changes that occur in the absence of genetic alteration. Such adaptations can provide phenotypic plasticity in reaction to environmental cues. While prior studies suggest that epigenetics plays a role in the response to DNA damage, no direct demonstration of epigenetically inheritable processes have been described in this context. Results Here we report the identification of an epigenetic response to ultraviolet (UV) radiation in the baker’s yeast Saccharomyces cerevisiae. Cells that have been previously exposed to a low dosage of UV exhibit dramatically increased survival following subsequent UV exposure, which we refer to as UV hyper-resistance (UVHR). This phenotypic change persists for multiple mitotic generations, without any indication of an underlying genetic basis. Pre-exposed cells experience a notable reduction in the amount of DNA damage caused by the secondary UV exposure. While the mechanism for the protection is not fully characterized, our results suggest that UV-induced cell size increases and/or cell wall changes are contributing factors. In addition, we have identified two histone modifications, H3K56 acetylation and H3K4 methylation, that are important for UVHR, potentially serving as mediators of UV protective gene expression patterns, as well as epigenetic marks to propagate the phenotype across cell generations. Conclusions Exposure to UV radiation triggers an epigenetically inheritable protective response in baker’s yeast that increases the likelihood of survival in response to subsequent UV exposures. These studies provide the first demonstration of an epigenetically inheritable dimension of the cellular response to DNA damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.