Cover: In this filtrodynamics study operating principles, produced prototype instrumentation, initial data, early models for interpreting data, and some intriguing correlations among filters, particle populations, and flow rates are established. Further details can be found in the article by C. Brusamarello, M. F. Drenski, A. Isakov, and W. F. Reed* http://doi.wiley.com/10.1002/mren.201300152.
Hybrid materials composed of semiconductor oxide metals and conducting polymers have been highlighted as a new class of materials, with superior properties compared to their pure constituents. Among the studied composites to photocatalytic applications, the hybrids of titanium dioxide (TiO2) and polypyrrole (PPy) are promising due to several advantages over the pure TiO2 nanoparticles. The PPy/TiO2 composite has been effectively synthetized by chemical polymerization methods as in situ polymerization, photopolymerization, electrochemical polymerization, and molecular imprinting polymerization (MIP). All the cited methods appear to be effective in reducing the band gap energy, which suggests an increase in the formation of photoexcited electron-hole pairs and, consequently, an improvement of the light absorption in the visible region (400–700 nm). In addition, the doping of PPy/TiO2 with noble metals improves the separation of charges in the semiconductor particle, inhibiting the recombination of photogenerated electron-hole pairs. All advantages are evidenced by the characterization results of SEM, TEM, HRTEM, UV-vis DRS, FTIR, XRD, PL, TGA and electrical properties. Finally, results from literature present that PPy/TiO2 composites have better photocatalytic activity than the pure TiO2, being an alternative photocatalyst promising for visible light applications. Thus, this work presents a review of the synthesis, characterization, and application of PPy/TiO2 composites in the photocatalytic processes.
Modelado de la biodegradación en biorreactores de lodos de hidrocarburos totales del petróleo intemperizados en suelos y sedimentos (Biodegradation modeling of sludge bioreactors of total petroleum hydrocarbons weathering in soil and sediments)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.