Relapse-prone, poor prognosis neuroblastoma is frequently characterized by deletion of chr1p36 where tumor suppressor gene KIF1Bβ resides. Interestingly, many 1p36-positive patients failed to express KIF1Bβ protein. Since altered cellular redox status has been reported to be involved in cell death and protein modification, we investigated the relationship between reactive oxygen species (ROS) and KIF1Bβ. Here, we showed that wild-type KIF1Bβ protein expression positively correlates with superoxide (O2 −) and total ROS levels in neuroblastoma cells, unlike apoptotic loss-of-function KIF1Bβ mutants. Overexpression of KIF1Bβ apoptotic domain variants increases total ROS and, specifically O2 −, whereas knockdown of endogenous KIF1Bβ decreases ROS and O2 −. Interestingly, O2 − increases KIF1Bβ protein expression, independent of the proteasomal degradation pathway. Scavenging O2 − or ROS decreases KIF1Bβ protein expression and subsequent apoptosis. Moreover, treatment with investigational redox compound Gliotoxin increases O2 −, KIF1Bβ protein expression, apoptosis and colony formation inhibition. Overall, our findings suggest that ROS and O2 − may be important downstream effectors of KIF1Bβ-mediated apoptosis. Subsequently, O2 − produced may increase KIF1Bβ protein expression in a positive feedback mechanism. Therefore, ROS and, specifically O2 −, may be critical regulators of KIF1Bβ-mediated apoptosis and its protein expression in neuroblastoma.
Existing marker-based methods of minimal residual disease (MRD) determination in neuroblastoma do not effectively enrich for the circulating disease cell population. Given the relative size differential of neuroblastoma tumor cells over normal hematogenous cells, we hypothesized that cell size-based separation could enrich circulating tumor cells (CTCs) from blood samples and disseminated tumor cells (DTCs) from bone marrow aspirates (BMA) of neuroblastoma patients, and that their gene expression profiles could vary dynamically with various disease states over the course of treatment. Using a spiral microfluidic chip, peripheral blood of 17 neuroblastoma patients at 3 serial treatment timepoints (diagnosis, n=17; post-chemotherapy, n=11; and relapse, n=3), and bone marrow samples at diagnosis were enriched for large intact circulating cells. Profiling the resulting enriched samples with immunohistochemistry and mRNA expression of 1490 cancer-related genes via NanoString, 13 of 17 samples contained CTCs displaying cytologic atypia, TH and PHOX2B expression and/or upregulation of cancer-associated genes. Gene signatures reflecting pro-metastatic processes and the neuroblastoma mesenchymal super-enhancer state were consistently upregulated in 7 of 13 samples, 6 of which also had metastatic high-risk disease. Expression of 8 genes associated with PI3K and GCPR signaling were significantly upregulated in CTCs of patients with bone marrow metastases versus patients without. Correspondingly, in patients with marrow metastases, differentially-expressed gene signatures reflected upregulation of immune regulation in bone marrow DTCs versus paired CTCs samples. In patients who later developed disease relapse, 5 genes involved in immune cell regulation, JAK/STAT signaling and the neuroblastoma mesenchymal super-enhancer state (OLFML2B, STAT1, ARHGDIB, STAB1, TLR2) were upregulated in serial CTC samples over their disease course, despite urinary catecholamines and bone marrow aspirates not indicating the disease recurrences. In summary, using a label-free cell size-based separation method, we enriched and characterized intact circulating cells in peripheral blood indicative of neuroblastoma CTCs, as well as their DTC counterparts in the bone marrow. Expression profiles of pro-metastatic genes in CTCs correlated with the presence of bone marrow metastases at diagnosis, while longitudinal profiling identified persistently elevated expression of genes in CTCs that may serve as novel predictive markers of hematogenous MRD in neuroblastoma patients that subsequently relapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.