Lactoferrin, an iron-binding glycoprotein, kills bacteria and modulates inflammatory and immune responses. Presence of lactoferrin in the female reproductive tract suggests that the protein may be part of the mucosal immune system and act as the first line of defense against pathogenic organisms. We have discovered that lactoferrin is a major estrogen-inducible protein in the uterus of immature mice and is up-regulated by physiological levels of estrogen during proestrous in mature mice. In the present study, we examined lactoferrin gene expression and its response to estrogen stimulation in the female reproductive tract of several strains of immature mouse, rat, and hamster. The lactoferrin expression in the cycling adult female rat was also evaluated. Lactoferrin gene polymorphism exists among the different mouse strains. In the three inbred mouse strains studied, lactoferrin gene expression is stimulated by estrogen in the immature uterus, although it is less robust than in the outbred CD-1 mouse. We found that the lactoferrin gene is constitutively expressed in the epithelium of the vagina and the isthmus oviduct; however, it is estrogen inducible in the uterus of immature mice and rats. Furthermore, lactoferrin is elevated in the uterine epithelium of the mature rat during the proestrous and estrous stages of the estrous cycle. Estrogen stimulation of lactoferrin gene expression in the reproductive tract of an immature hamster is limited to the vaginal epithelium. The present study demonstrates differential expression and estrogen responsiveness of the lactoferrin gene in different regions of the female rodent reproductive tract and variation among the rodent species studied.
We have previously shown that the estrogen responsiveness of the human lactoferrin gene in a transient transfection system is mediated through an imperfect estrogen response element (ERE) and a steroidogenic factor 1 binding element (SFRE) 26 bp upstream from ERE. Reporter constructs containing SFRE and ERE respond to estrogen stimulation in a dose-dependent manner, whereas mutations at either one of the response elements severely impaired the estrogen responsiveness. In this study, we demonstrated that estrogen receptor (ERalpha) binds to the human lactoferrin gene ERE and forms two complexes in an electrophoresis mobility shift assay (EMSA). These complexes could be supershifted by an antibody to ERalpha. We also showed that in normal cycling women, lactoferrin gene expression in the endometrium increases during the proliferative phase and diminishes during the luteal phase. This in-vivo study thus supported the finding from transient transfection experiments that the human lactoferrin gene expression is elevated in an environment with a high level of estrogen. The estrogen effect on lactoferrin gene expression in the rhesus monkey endometrium was studied by Western blotting and immunohistochemistry. The immunohistochemistry results showed that immunoreactive lactoferrin protein was not detectable in the untreated ovariectomized monkey endometrium, was elevated by estrogen treatment, and was suppressed by sequential, combined estrogen plus progesterone treatment. In conclusion, this study has shown that lactoferrin gene expression is responsive to estrogen in primate endometrium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.