et al.. New insights into minor splicing-a transcriptomic analysis of cells derived from TALS patients. RNA, Cold Spring Harbor Laboratory Press, 2019, pp.ABSTRACT Minor intron splicing plays a central role in human embryonic development and survival. Indeed, biallelic mutations in RNU4ATAC, transcribed into the minor spliceosomal U4atac snRNA, are responsible for three rare autosomal recessive multimalformation disorders named Taybi-Linder (TALS/MOPD1), Roifman (RFMN), and Lowry-Wood (LWS) syndromes, which associate numerous overlapping signs of varying severity. Although RNA-seq experiments have been conducted on a few RFMN patient cells, none have been performed in TALS, and more generally no in-depth transcriptomic analysis of the ∼700 human genes containing a minor (U12-type) intron had been published as yet. We thus sequenced RNA from cells derived from five skin, three amniotic fluid, and one blood biosamples obtained from seven unrelated TALS cases and from age-and sex-matched controls. This allowed us to describe for the first time the mRNA expression and splicing profile of genes containing U12-type introns, in the context of a functional minor spliceosome. Concerning RNU4ATAC-mutated patients, we show that as expected, they display distinct U12-type intron splicing profiles compared to controls, but that rather unexpectedly mRNA expression levels are mostly unchanged. Furthermore, although U12-type intron missplicing concerns most of the expressed U12 genes, the level of U12-type intron retention is surprisingly low in fibroblasts and amniocytes, and much more pronounced in blood cells. Interestingly, we found several occurrences of introns that can be spliced using either U2, U12, or a combination of both types of splice site consensus sequences, with a shift towards splicing using preferentially U2 sites in TALS patients' cells compared to controls. Global mRNA expression levels of U12 genes in control cell typesTo date, despite the large number of transcriptomic studies performed in human tissues and cell types, the spatial Cologne et al.
Transcriptomic genome-wide analyses demonstrate massive variation of alternative splicing in many physiological and pathological situations. One major challenge is now to establish the biological contribution of alternative splicing variation in physiological-or pathological-associated cellular phenotypes. Toward this end, we developed a computational approach, named "Exon Ontology," based on terms corresponding to well-characterized protein features organized in an ontology tree. Exon Ontology is conceptually similar to Gene Ontology-based approaches but focuses on exon-encoded protein features instead of gene level functional annotations. Exon Ontology describes the protein features encoded by a selected list of exons and looks for potential Exon Ontology term enrichment. By applying this strategy to exons that are differentially spliced between epithelial and mesenchymal cells and after extensive experimental validation, we demonstrate that Exon Ontology provides support to discover specific protein features regulated by alternative splicing. We also show that Exon Ontology helps to unravel biological processes that depend on suites of coregulated alternative exons, as we uncovered a role of epithelial cell-enriched splicing factors in the AKT signaling pathway and of mesenchymal cell-enriched splicing factors in driving splicing events impacting on autophagy. Freely available on the web, Exon Ontology is the first computational resource that allows getting a quick insight into the protein features encoded by alternative exons and investigating whether coregulated exons contain the same biological information. [Supplemental material is available for this article.]Alternative splicing is a major step in the gene expression process leading to the production of different transcripts with different exon content (or alternative splicing variants) from one single gene. This mechanism is the rule, as 95% of human genes produce at least two splicing variants (Nilsen and Graveley 2010;de Klerk and 't Hoen 2015;Lee and Rio 2015). Alternative splicing decisions rely on splicing factors binding on pre-mRNA molecules more or less close to splicing sites and regulating their recognition by the spliceosome (Lee and Rio 2015). Other mechanisms, including usage of alternative promoters and alternative polyadenylation sites, also increase the diversity of transcripts and drive both quantitative and qualitative effects (Tian and Manley 2013;de Klerk and 't Hoen 2015). Indeed, alternative promoters and alternative polyadenylation sites can impact mRNA 5 ′ -and 3 ′ -untranslated regions, which can have consequences on transcript stability or translation (Tian and Manley 2013;de Klerk and 't Hoen 2015). In addition, alternative splicing can lead to the biogenesis of nonproductive mRNAs degraded by the nonsense-mediated mRNA decay pathway (Hamid and Makeyev 2014). These mechanisms can also change the gene coding sequence. Alternative promoters and alternative polyadenylation sites can change protein N-and C-terminal domains, respec...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.