Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies with limited therapeutic options. Curative therapy is limited to surgery whereas chemotherapy treatments are the election option for unresectable or metastatic cholangiocarcinoma. Cisplatin plus gemcitabine is the reference chemotherapy regimen, albeit the contribution to the median overall survival barely reaches one year. Drug transporters are undoubtedly a limiting step for drug bioavailability and have been clearly related to chemoresistance. Several members of the SoLute Carrier (SLC) superfamily involved in the uptake of anticancer drugs used to treat cholangiocarcinoma are downregulated in these tumors. This study shows the increase in the expression of specific drug transporters exerted by cisplatin treatment thereby enhancing their transport activity. Combination treatments of cisplatin with selected drugs as gemcitabine and sorafenib take in by these transporters at the desired combination schedule induced synergy. These data support the concept that proper administration pattern could favor treatment outcome.
High-affinity uptake of natural nucleosides as well as nucleoside derivatives used in anticancer therapies is mediated by human concentrative nucleoside transporters (hCNTs). hCNT1, the hCNT family member that specifically transports pyrimidines, is also a transceptor involved in tumor progression. In particular, oncogenesis appears to be associated with hCNT1 downregulation in some cancers, although the underlying mechanisms are largely unknown. Here, we sought to address changes in colorectal and pancreatic ductal adenocarcinoma—both of which are important digestive cancers—in the context of treatment with fluoropyrimidine derivatives. An analysis of cancer samples and matching non-tumoral adjacent tissues revealed downregulation of hCNT1 protein in both types of tumor. Further exploration of the putative regulation of hCNT1 by microRNAs (miRNAs), which are highly deregulated in these cancers, revealed a direct relationship between the oncomiRs miR-106a and miR-17 and the loss of hCNT1. Collectively, our findings provide the first demonstration that hCNT1 inhibition by these oncomiRs could contribute to chemoresistance to fluoropyrimidine-based treatments in colorectal and pancreatic cancer.
Graphic abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.