The RNA helicase UP-FRAMESHIFT (UPF1) is a key factor of nonsense-mediated decay (NMD), a mRNA decay pathway involved in RNA quality control and in the fine-tuning of gene expression. UPF1 recruits UPF2 and UPF3 to constitute the NMD core complex, which is conserved across eukaryotes. No other components of UPF1-containing ribonucleoproteins (RNPs) are known in plants, despite its key role in regulating gene expression. Here, we report the identification of a large set of proteins that co-purify with the Arabidopsis UPF1, either in an RNA-dependent or RNA-independent manner. We found that like UPF1, several of its co-purifying proteins have a dual localization in the cytosol and in P-bodies, which are dynamic structures formed by the condensation of translationally repressed mRNPs. Interestingly, more than half of the proteins of the UPF1 interactome also co-purify with DCP5, a conserved translation repressor also involved in P-body formation. We identified a terminal nucleotidyltransferase, ribonucleases and several RNA helicases among the most significantly enriched proteins co-purifying with both UPF1 and DCP5. Among these, RNA helicases are the homologs of DDX6/Dhh1, known as translation repressors in humans and yeast, respectively. Overall, this study reports a large set of proteins associated with the Arabidopsis UPF1 and DCP5, two components of P-bodies, and reveals an extensive interaction network between RNA degradation and translation repression factors. Using this resource, we identified five hitherto unknown components of P-bodies in plants, pointing out the value of this dataset for the identification of proteins potentially involved in translation repression and/or RNA degradation.
In eukaryotes, general mRNA decay requires the decapping complex. The activity of this complex depends on its catalytic subunit, DECAPPING2 (DCP2), and its interaction with decapping enhancers, including its main partner DECAPPING1 (DCP1). Here, we report that in Arabidopsis thaliana, DCP1 also interacts with a NYN domain endoribonuclease, hence named DCP1-ASSOCIATED NYN ENDORIBONUCLEASE 1 (DNE1). Interestingly, we found DNE1 predominantly associated with DCP1, but not with DCP2, and reciprocally, suggesting the existence of two distinct protein complexes. We also showed that the catalytic residues of DNE1 are required to repress the expression of mRNAs in planta upon transient expression. The overexpression of DNE1 in transgenic lines led to growth defects and a similar gene deregulation signature than inactivation of the decapping complex. Finally, the combination of dne1 and dcp2 mutations revealed a functional redundancy between DNE1 and DCP2 in controlling phyllotactic pattern formation. Our work identifies DNE1, a hitherto unknown DCP1 protein partner highly conserved in the plant kingdom and identifies its importance for developmental robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.