With a low rate of new building construction and an insufficient rate of existing building renovation, there is the need to step up the pace of building renovation with ambitious performance targets to achieve European Union (EU) climate change policies for 2050. However, innovative technologies, including, but not limiting to, plug and play (PnP) prefabricated facades, information and communications technology (ICT)-support for building management systems (BMS), the integration of renewable energy systems (RES), building information model (BIM) and building performance simulation models (BPSM), advanced heating, ventilation, and air conditioning (HVAC), advanced geomatics, 3D-printing, and smart connectors, cannot alone solve the problem of low renovation rates of existing buildings in Europe that is hindering reaching of EU-wide targets. A workshop was held at the Sustainable Place Conference 2018 to present, with an integrative approach, the experiences from four H2020 innovation actions, i.e., 4RinEU, P2ENDURE, Pro-GET-OnE, and MORE-CONNECT, which were united by their central aims of improving building energy performance through deep renovation practices. This article presents the outcomes of the joint workshop and interactive discussion, by focusing on technical, financial, and social added values, barriers and challenges, in the context of the building renovation processes tackled by the four projects. Conclusive remarks converge on the identification of open questions to address future innovation opportunities, as well as some recommendations to be used at a policy level and/or in future implementation projects.
With a low rate of new building construction and insufficient rate of existing building renovation, there is the need for stepping up the pace of building renovation with ambitious performance targets to achieve EU climate change policies. However, effective technologies alone cannot solve the low renovation rate of existing buildings in Europe that is hindering the reaching of EU-wide targets. A workshop was held at the Sustainable Place Conference 2018 to present successful experiences with an integrative approach from H2020 innovation actions (4RinEU, P2ENDURE, Pro-GET-OnE, MORE-CONNECT) aiming at improving building energy performance through deep renovation. This article presents the outcomes of the joint workshop and interactive discussion, by focusing on the different technical, financial and social added values, barriers and challenges in building renovation as well as on the identification of open questions to address future innovation opportunities.
Planning the life cycle of a building, that is designing its resilience, is progressively increasing its relevance: the rehabilitation is considered a sustainable approach to the performance improvement of the built patrimony, which enables the extension of the useful life, compared to the more radical intervention of demolition and reconstruction. The most relevant aspects related to building performance regard the seismic rehabilitation of structures and the energy retrofitting of envelopes and installations. However, these are invasive and economically relevant interventions, that a private investor unlikely faces without specific normative or economic inputs. For this reason, the rehabilitation of public buildings and, particularly of public housing assumes a leading role in the building sector. The integrated approach of deep renovations leads to new strategies of life cycle planning and management based on the identification of environmental performance indicators with the goal of evaluating intervention alternatives, balancing the two – seismic and energy – strategies. An innovative approach to the seismic and energy rehabilitation of public housing in the Mediterranean area has been studied in the European research project Pro-GET-onE, coordinated by the University of Bologna. The research is based on the realization of an experimental exoskeleton to improve the combined seismic and energy performances. The solution also generates an economic surplus as a consequence of the increased living surfaces. This paper reports some results of the Life Cycle Assessment and the Life Cycle Cost Assessment related to this project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.