In this paper, we show that minimization problems involving sublinear regularizing terms are ill-posed, in general, although numerical experiments in image processing give very good results. The energies studied here are inspired by image restoration and image decomposition. Rewriting the nonconvex sublinear regularizing terms as weighted total variations, we give a new approach to perform minimization via the well-known Chambolle's algorithm. The approach developed here provides an alternative to the well-known half-quadratic minimization one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.