Colloidal metal‐halide perovskite nanocrystals (MHP NCs) are gaining significant attention for a wide range of optoelectronics applications owing to their exciting properties, such as defect tolerance, near‐unity photoluminescence quantum yield, and tunable emission across the entire visible wavelength range. Although the optical properties of MHP NCs are easily tunable through their halide composition, they suffer from light‐induced halide phase segregation that limits their use in devices. However, MHPs can be synthesized in the form of colloidal nanoplatelets (NPls) with monolayer (ML)‐level thickness control, exhibiting strong quantum confinement effects, and thus enabling tunable emission across the entire visible wavelength range by controlling the thickness of bromide or iodide‐based lead‐halide perovskite NPls. In addition, the NPls exhibit narrow emission peaks, have high exciton binding energies, and a higher fraction of radiative recombination compared to their bulk counterparts, making them ideal candidates for applications in light‐emitting diodes (LEDs). This review discusses the state‐of‐the‐art in colloidal MHP NPls: synthetic routes, thickness‐controlled synthesis of both organic–inorganic hybrid and all‐inorganic MHP NPls, their linear and nonlinear optical properties (including charge‐carrier dynamics), and their performance in LEDs. Furthermore, the challenges associated with their thickness‐controlled synthesis, environmental and thermal stability, and their application in making efficient LEDs are discussed.
This work focuses on the systematic investigation of the shape,s ize, and composition-controlled synthesis of perovskite nanocrystals (NCs) under inert gas-free conditions and using pre-synthesized precursor stocksolutions.Inthe case of CsPbBr 3 NCs,w ef ind that the lowering of reaction temperature from ~175 to 100 8 8Ci nitially leads to ac hange of morphology from bulk-like 3D nanocubes to 0D nanocubes with 3D-quantum confinement, while at temperatures below 100 8 8Ct he reaction yields 2D nanoplatelets (NPls) with 1Dquantum confinement. However,t oo ur surprise,a th igher temperatures (~215 8 8C), the reaction yields CsPbBr 3 hexapod NCs,w hich have been rarely reported. The synthesis is scalable,a nd their halide composition is tunable by simply using different combinations of precursor solutions.T he versatility of the synthesis is demonstrated by applying it to relatively less explored shape-controlled synthesis of FAPbBr 3 NCs.D espite the synthesis carried out in the air,b oth the inorganic and hybrid perovskite NCs exhibit nearly-narrow emission without applying any size-selective separation, and it is precisely tunable by controlling the reaction temperature.
Over the past few years, lead-halide perovskites (LHPs), both in the form of bulk thin films and colloidal nanocrystals (NCs), have revolutionized the field of optoelectronics, emerging at the forefront of next-generation optoelectronics. The power conversion efficiency (PCE) of halide perovskite solar cells has increased from 3.8% to over 25.7% over a short period of time and is very close to the theoretical limit (33.7%). At the same time, the external quantum efficiency (EQE) of perovskite LEDs has surpassed 23% and 20% for green and red emitters, respectively. Despite great progress in device efficiencies, the photoactive phase instability of perovskites is one of the major concerns for the long-term stability of the devices and is limiting their transition to commercialization. In this regard, researchers have found that the phase stability of LHPs and the reproducibility of the device performance can be improved by A-site cation alloying with two or more species, these are named mixed cation (double, triple, or quadruple) perovskites. This review provides a state-of-theart overview of different types of mixed A-site cation bulk perovskite thin films and colloidal NCs reported in the literature, along with a discussion of their synthesis, properties, and progress in solar cells and LEDs.
Colloidal lead-halide perovskite nanocrystals (LHP NCs) have emerged over the past decade as leading candidates for efficient next-generation optoelectronic devices, but their properties and performance critically depend on how they are purified. While antisolvents are widely used for purification, a detailed understanding of how the polarity of the antisolvent influences the surface chemistry and composition of the NCs is missing in the field. Here, we fill this knowledge gap by studying the surface chemistry of purified CsPbBr x I 3-x NCs as the model system, which in itself is considered a promising candidate for pure-red lightemitting diodes and top-cells for tandem photovoltaics. Interestingly, we find that as the polarity of the antisolvent increases (from methyl acetate to acetone to butanol), there is a blueshift in the photoluminescence (PL) peak of the NCs along with a decrease in PL quantum yield (PLQY). Through transmission electron microscopy and X-ray photoemission spectroscopy measurements, we find that these changes in PL properties arise from antisolvent-induced iodide removal, which leads to a change in halide composition and, thus, the bandgap. Using detailed nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR) measurements along with density functional theory calculations, we propose that more polar antisolvents favor the detachment of the oleic acid and oleylamine ligands, which undergo amide condensation reactions, leading to the removal of iodide anions from the NC surface bound to these ligands. This work shows that careful selection of low-polarity antisolvents is a critical part of designing the synthesis of NCs to achieve high PLQYs with minimal defect-mediated phase segregation.
We report here fast A‐site cation cross‐exchange between APbX3 perovskite nanocrystals (NCs) made of different A‐cations (Cs (cesium), FA (formamidinium), and MA (methylammonium)) at room temperature. Surprisingly, the A‐cation cross‐exchange proceeds as fast as the halide (X=Cl, Br, or I) exchange with the help of free A‐oleate complexes present in the freshly prepared colloidal perovskite NC solutions. This enabled the preparation of double (MACs, MAFA, CsFA)‐ and triple (MACsFA)‐cation perovskite NCs with an optical band gap that is finely tunable by their A‐site composition. The optical spectroscopy together with structural analysis using XRD and atomically resolved high‐angle annular dark‐field scanning transmission electron microscopy (HAADF‐STEM) and integrated differential phase contrast (iDPC) STEM indicates the homogeneous distribution of different cations in the mixed perovskite NC lattice. Unlike halide ions, the A‐cations do not phase‐segregate under light illumination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.