Amyloidogenic proteins share a propensity to convert to the β-structure-rich amyloid state that is associated with the progression of several protein-misfolding disorders. Here we show that a single engineered β-hairpin-binding protein, the β-wrapin AS10, binds monomers of three different amyloidogenic proteins, that is, amyloid-β peptide, α-synuclein, and islet amyloid polypeptide, with sub-micromolar affinity. AS10 binding inhibits the aggregation and toxicity of all three proteins. The results demonstrate common conformational preferences and related binding sites in a subset of the amyloidogenic proteins. These commonalities enable the generation of multispecific monomer-binding agents.
Background: Protofibrils of the amyloid- peptide (A) are neurotoxic oligomers implicated in development and progression of Alzheimer disease. Results: The dissociation of A protofibrils into their monomeric subunits is a slow process, occurring on the time scale of hours. Conclusion: A protofibrils possess a high kinetic stability toward dissociation into monomers. Significance: The longevity of A protofibrils permits sustained toxic effects.
Conversion of the intrinsically disordered protein α-synuclein (α-syn) into amyloid aggregates is a key process in Parkinson's disease. The sequence region 35-59 contains β-strand segments β1 and β2 of α-syn amyloid fibril models and most disease-related mutations. β1 and β2 frequently engage in transient interactions in monomeric α-syn. The consequences of β1-β2 contacts are evaluated by disulfide engineering, biophysical techniques, and cell viability assays. The double-cysteine mutant α-synCC, with a disulfide linking β1 and β2, is aggregation-incompetent and inhibits aggregation and toxicity of wild-type α-syn. We show that α-syn delays the aggregation of amyloid-β peptide and islet amyloid polypeptide involved in Alzheimer's disease and type 2 diabetes, an effect enhanced in the α-synCC mutant. Tertiary interactions in the β1-β2 region of α-syn interfere with the nucleation of amyloid formation, suggesting promotion of such interactions as a potential therapeutic approach.
Background:Aggregates of the protein Tau are associated with Alzheimer disease and other neurodegenerative diseases. Results: The engineered binding protein TP4, targeting the Tau repeat domain, was obtained from a novel -wrapin protein library. Conclusion: TP4 interacts with two alternative conformations of Tau, thereby inhibiting Tau aggregation. Significance: Binding of aggregation-prone sequence stretches is an approach to interfere with Tau aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.