BackgroundOvarian carcinomas consist of at least five distinct diseases: high-grade serous, low-grade serous, clear cell, endometrioid, and mucinous. Biomarker and molecular characterization may represent a more biologically relevant basis for grouping and treating this family of tumors, rather than site of origin. Molecular characteristics have become the new standard for clinical pathology, however development of tailored type-specific therapies is hampered by a failure of basic research to recognize that model systems used to study these diseases must also be stratified. Unrelated model systems do offer value for study of biochemical processes but specific cellular context needs to be applied to assess relevant therapeutic strategies.MethodsWe have focused on the identification of clear cell carcinoma cell line models. A panel of 32 “ovarian cancer” cell lines has been classified into histotypes using a combination of mutation profiles, IHC mutation-surrogates, and a validated immunohistochemical model. All cell lines were identity verified using STR analysis.ResultsMany described ovarian clear cell lines have characteristic mutations (including ARID1A and PIK3CA) and an overall molecular/immuno-profile typical of primary tumors. Mutations in TP53 were present in the majority of high-grade serous cell lines. Advanced genomic analysis of bona-fide clear cell carcinoma cell lines also support copy number changes in typical biomarkers such at MET and HNF1B and a lack of any recurrent expressed re-arrangements.Conclusions: As with primary ovarian tumors, mutation status of cancer genes like ARID1A and TP53 and a general immuno-profile serve well for establishing histotype of ovarian cancer cell We describe specific biomarkers and molecular features to re-classify generic “ovarian carcinoma” cell lines into type specific categories. Our data supports the use of prototype clear cell lines, such as TOV21G and JHOC-5, and questions the use of SKOV3 and A2780 as models of high-grade serous carcinoma.
Our group recently described recurrent somatic mutations of the miRNA processing gene DICER1 in non-epithelial ovarian cancer. Mutations appeared to be clustered around each of four critical metal-binding residues in the RNase IIIB domain of DICER1. This domain is responsible for cleavage of the 3' end of the 5p miRNA strand of a pre-mRNA hairpin. To investigate the effects of these cancer-associated 'hotspot' mutations, we engineered mouse DICER1-deficient ES cells to express wild-type and an allelic series of the mutant DICER1 variants. Global miRNA and mRNA profiles from cells carrying the metal-binding site mutations were compared to each other and to wild-type DICER1. The miRNA and mRNA profiles generated through the expression of the hotspot mutations were virtually identical, and the DICER1 hotspot mutation-carrying cells were distinct from both wild-type and DICER1-deficient cells. Further, miRNA profiles showed that mutant DICER1 results in a dramatic loss in processing of mature 5p miRNA strands but were still able to create 3p strand miRNAs. Messenger RNA (mRNA) profile changes were consistent with the loss of 5p strand miRNAs and showed enriched expression for predicted targets of the lost 5p-derived miRNAs. We therefore conclude that cancer-associated somatic hotspot mutations of DICER1, affecting any one of four metal-binding residues in the RNase IIIB domain, are functionally equivalent with respect to miRNA processing and are hypomorphic alleles, yielding a global loss in processing of mature 5p strand miRNA. We further propose that this resulting 3p strand bias in mature miRNA expression likely underpins the oncogenic potential of these hotspot mutations.
BackgroundA somatic mutation in the FOXL2 gene is reported to be present in almost all (97%; 86/89) morphologically defined, adult-type, granulosa-cell tumors (A-GCTs). This FOXL2 c.402C>G mutation changes a highly conserved cysteine residue to a tryptophan (p.C134W). It was also found in a minority of other ovarian malignant stromal tumors, but not in benign ovarian stromal tumors or unrelated ovarian tumors or breast cancers.Methodology/Principal FindingsHerein we studied other cancers and cell lines for the presence of this mutation. We screened DNA from 752 tumors of epithelial and mesenchymal origin and 28 ovarian cancer cell lines and 52 other cancer cell lines of varied origin. We found the FOXL2 c.402C>G mutation in an unreported A-GCT case and the A-GCT-derived cell line KGN. All other tumors and cell lines analyzed were mutation negative.Conclusions/SignificanceIn addition to proving that the KGN cell line is a useful model to study A-GCTs, these data show that the c.402C>G mutation in FOXL2 is not commonly found in a wide variety of other cancers and therefore it is likely pathognomonic for A-GCTs and closely related tumors.
Endometrial epithelium is the presumed tissue of origin for both eutopic and endometriosis-derived clear cell and endometrioid carcinomas. We had previously hypothesized that the morphological, biological and clinical differences between these carcinomas are due to histotype-specific mutations. Although some mutations and genomic landscape features are more likely to be found in one of these histotypes, we were not able to identify a single class of mutations that was exclusively present in one histotype and not the other. This lack of genomic differences led us to an alternative hypothesis that these cancers could arise from distinct cells of origin within endometrial tissue, and that it is the cellular context that accounts for their differences. In a proteomic screen, we identified cystathionine γ-lyase (CTH) as a marker for clear cell carcinoma, as it is expressed at high levels in clear cell carcinomas of the ovary and endometrium. In the current study, we analysed normal Müllerian tissues, and found that CTH is expressed in ciliated cells of endometrium (both eutopic endometrium and endometriosis) and fallopian tubes. We then demonstrated that other ciliated cell markers are expressed in clear cell carcinomas, whereas endometrial secretory cell markers are expressed in endometrioid carcinomas. The same differential staining of secretory and ciliated cells was demonstrable in a three-dimensional organoid culture system, in which stem cells were stimulated to differentiate into an admixture of secretory and ciliated cells. These data suggest that endometrioid carcinomas are derived from cells of the secretory cell lineage, whereas clear cell carcinomas are derived from, or have similarities to, cells of the ciliated cell lineage. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.