Background: We developed a hemodynamic mathematical model of human circulation coupled to a virtual hemodialyzer. The model was used to explore mechanisms underlying our clinical observations involving hemodialysis. Methods: The model consists of whole body human circulation, baroreflex feedback control, and a hemodialyzer. Four model populations encompassing baseline, dialysed, therapeutic hypothermia treated, and simultaneous dialysed with hypothermia were generated. In all populations atrial fibrillation and renal failure as co-morbidities, and exercise as a treatment were simulated. Clinically relevant measurables were used to quantify the effects of each in silico experiment. Sensitivity analysis was used to uncover the most relevant parameters. Results: Relative to baseline, the modelled dialysis increased the population mean diastolic blood pressure by 5%, large vessel wall shear stress by 6%, and heart rate by 20%. Therapeutic hypothermia increased systolic blood pressure by 3%, reduced large vessel shear stress by 15%, and did not affect heart rate. Therapeutic hypothermia reduced wall shear stress by 15% in the aorta and 6% in the kidneys, suggesting a potential anti-inflammatory benefit. Therapeutic hypothermia reduced cardiac output under atrial fibrillation by 12% and under renal failure by 20%. Therapeutic hypothermia and exercise did not affect dialyser function, but increased water removal by approximately 40%. Conclusions: This study illuminates some mechanisms of the action of therapeutic hypothermia. It also suggests clinical measurables that may be used as surrogates to diagnose underlying diseases such as atrial fibrillation.
report having resident involvement in screening and only 7% of programs include URiM residents.CONCLUSIONS: A minority of urology residency programs currently employ blinding of scores as part of Holistic review. Fewer programs involve URiM faculty or URiM residents in the screening process. An understanding of the current practices of residency programs can inform strategies for optimizing equity, diversity and inclusion in the urology match process.
Background. The treatment of coronary stenosis is decided by performing high risk invasive surgery to generate the fractional flow reserve diagnostics index, a ratio of distal to proximal pressures in respect of coronary atherosclerotic plaques. Non-invasive methods are a need of the times that necessitate the use of mathematical models of coronary hemodynamic physiology. This study proposes an extensible mathematical description of the coronary vasculature that provides an estimate of coronary fractional flow reserve. Methods. By adapting an existing computational model of human coronary blood flow, the effects of large vessel stenosis and microvascular disease on fractional flow reserve were quantified. Several simulations generated flow and pressure information, which was used to compute fractional flow reserve under several conditions including focal stenosis, diffuse stenosis, and microvascular disease. Sensitivity analysis was used to uncover the influence of model parameters on fractional flow reserve. The model was simulated as coupled non-linear ordinary differential equations and numerically solved using our implicit higher order method. Results. Large vessel stenosis affected fractional flow reserve. The model predicts that the presence, rather than severity, of microvascular disease affects coronary flow deleteriously. Conclusions. The model provides a computationally inexpensive instrument for future in silico coronary blood flow investigations as well as clinical-imaging decision making. A combination of focal and diffuse stenosis appears to be essential to limit coronary flow. In addition to pressure measurements in the large epicardial vessels, diagnosis of microvascular disease is essential. The independence of the index with respect to heart rate suggests that computationally inexpensive steady state simulations may provide sufficient information to reliably compute the index.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.