The variational approach to Bayesian inference enables simultaneous estimation of model parameters and model complexity. An interesting feature of this approach is that it also leads to an automatic choice of model complexity. Empirical results from the analysis of hidden Markov models with Gaussian observation densities illustrate this. If the variational algorithm is initialized with a large number of hidden states, redundant states are eliminated as the method converges to a solution, thereby leading to a selection of the number of hidden states. In addition, through the use of a variational approximation, the deviance information criterion for Bayesian model selection can be extended to the hidden Markov model framework. Calculation of the deviance information criterion provides a further tool for model selection, which can be used in conjunction with the variational approach.
Hidden Markov random field models provide an appealing representation of images and other spatial problems. The drawback is that inference is not straightforward for these models as the normalisation constant for the likelihood is generally intractable except for very small observation sets. Variational methods are an emerging tool for Bayesian inference and they have already been successfully applied in other contexts. Focusing on the particular case of a hidden Potts model with Gaussian noise, we show how variational Bayesian methods can be applied to hidden Markov random field inference. To tackle the obstacle of the intractable normalising constant for the likelihood, we explore alternative estimation approaches for incorporation into the variational Bayes algorithm. We consider a pseudolikelihood approach as well as the more recent reduced dependence approximation of the normalisation constant. To illustrate the effectiveness of these approaches we present empirical results from the analysis of simulated datasets. We also analyse a real dataset and compare results with those of previous analyses as well as those obtained from the recently developed auxiliary variable MCMC method and the recursive MCMC method. Our results show that the variational Bayesian analyses can be carried out much faster than the MCMC analyses and produce good estimates of model parameters. We also found that the reduced dependence approximation of the normalisation constant outperformed the
A new variational Bayesian (VB) algorithm, split and eliminate VB (SEVB), for modeling data via a Gaussian mixture model (GMM) is developed. This new algorithm makes use of component splitting in a way that is more appropriate for analyzing a large number of highly heterogeneous spiky spatial patterns with weak prior information than existing VB-based approaches. SEVB is a highly computationally efficient approach to Bayesian inference and like any VB-based algorithm it can perform model selection and parameter value estimation simultaneously. A significant feature of our algorithm is that the fitted number of components is not limited by the initial proposal giving increased modeling flexibility. We introduce two types of split operation in addition to proposing a new goodnessof-fit measure for evaluating mixture models. We evaluate their usefulness through empirical studies. In addition, we illustrate the utility of our new approach in an application on modeling human mobility patterns. This application involves large volumes of highly heterogeneous spiky data; it is difficult to model this type of data well using the standard VB approach as it is too restrictive and lacking in the flexibility required. Empirical results suggest that our algorithm has also improved upon the goodness-of-fit that would have been achieved using the standard VB method, and that it is also more robust to various initialization settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.