Sole-carbon-source tests (Biolog), designed to identify bacteria, have become very popular for metabolically fingerprinting soil microbial communities, despite disadvantages associated with the use of carbon source profiles that primarily select for fast-growing bacteria. In this paper we describe the use of an alternative method that combines the advantages of the Biolog community-level physiological profile (CLPP) method, in which microtiter-based detection plates are used, with the ability to measure carbon dioxide evolution from whole soil. This method facilitates measurement over short periods of time (4 to 6 h) and does not require the extraction and culturing of organisms. Deep-well microtiter plates are used as test wells into which soil is placed. The apparatus to fill the deep-well plates and interface it with a second removable detection plate is described. Two detection systems, a simple colorimetric reaction in absorbent alkali and scintillation counting with radioactive carbon sources, are described. The methods were compared to the Biolog-CLPP system by using soils under different vegetation types and soil treated with wastewater sludge. We aimed to test the hypothesis that using whole soil would have specific advantages over using extracts in that more immediate responses to substrates could be obtained that would reflect activity rather than growth. The whole-soil method was more rapid and gave earlier detection of C source use. Also, the metabolic fingerprints obtained could discriminate between sludge treatments.
New Zealand is currently the only major fruit producing country in the world that is free of economically important fruit flies. As part of the effort to maintain this status, there is a need to supplement quarantine decision-making procedures with a means of rapidly identifying immature life stage infestations to the species level. Here we describe a molecular method that achieves this, using simple restriction patterns of ribosomal DNA (rDNA) as diagnostic markers. The 18S and 18S plus internal transcribed spacer (ITS) regions were amplified from larval DNA by the polymerase chain reaction (PCR). Nineteen species, spanning four genera (including five subgenera of Bactrocera) were analysed. Restriction analysis of the 18S PCR product provided poor resolution, even at the generic level. Digestion of the 18S + ITS PCR product, however, generated thirteen diagnostic haplotypes as defined by the composite restriction patterns from Rsal, Sau3a Haelll and Alul. No variation was detected at these restriction sites within or between populations. Twenty two restriction enzymes have been screened, but diagnostic RFLPs have yet to been found for six out of the ten Bactrocera (Bactrocera) species; B. passiflorae (Froggatt) cannot be distinguished from B. facialis (Coquillet), nor B. kirki (Froggatt) from B. trilineola (Froggatt) or B. neohumeralis (Hardy) from B. tnjoni (Froggatt). Geographic origin could assist in distinguishing the first four species, but the latter pair are very closely related with overlapping origins, hosts and adult morphology. All six species, however, are considered high risk with respect to their likely establishment in New Zealand. Therefore diagnosis based on this molecular technique would support the same quarantine decision. We consider this method could be useful as a diagnostic technique and discuss directions for further development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.