Using data from the PdBI Arcsecond Whirlpool Survey (PAWS), we have generated the largest extragalactic Giant Molecular Cloud (GMC) catalog to date, containing 1,507 individual objects. GMCs in the inner M51 disk account for only 54% of the total 12 CO(1-0) luminosity of the survey, but on average they exhibit physical properties similar to Galactic GMCs. We do not find a strong correlation between the GMC size and velocity dispersion, and a simple virial analysis suggests that ∼ 30% of GMCs in M51 are unbound. We have analyzed the GMC properties within seven dynamically-motivated galactic environments, finding that GMCs in the spiral arms and in the central region are brighter and have higher velocity dispersions than inter-arm clouds. Globally, the GMC mass distribution does not follow a simple power-law shape. Instead, we find that the shape of the mass distribution varies with galactic environment: the distribution is steeper in inter-arm region than in the spiral arms, and exhibits a sharp truncation at high masses for the nuclear bar region. We propose that the observed environmental variations in the GMC properties and mass distributions are a consequence of the combined action of large-scale dynamical processes and feedback from high mass star formation. We describe some challenges of using existing GMC identification techniques for decomposing the 12 CO(1-0) emission in molecule-rich environments, such as M51's inner disk.
We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS will have on our understanding of the formation and evolution of YSCs and compact stellar associations within their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628The 1 is consistent with a power-law distribution of slopes~-2 and a truncation of a few times 10 5 M . After their formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to hierarchically organized star-forming regions, suggesting that they are expanding systems. We find massindependent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or no disruption. We observe faster disruption rates for low mass (10 4 M ) clusters, suggesting that a massdependent component is necessary to fully describe the YSC disruption process in NGC 628.Astrophysical Journal, 841:131 (26pp), 2017 June 1 https:
We present Phantom, a fast, parallel, modular and low-memory smoothed particle hydrodynamics and magnetohydrodynamics code developed over the last decade for astrophysical applications in three dimensions. The code has been developed with a focus on stellar, galactic, planetary and high energy astrophysics and has already been used widely for studies of accretion discs and turbulence, from the birth of planets to how black holes accrete. Here we describe and test the core algorithms as well as modules for magnetohydrodynamics, self-gravity, sink particles, dust-gas mixtures, H2 chemistry, physical viscosity, external forces including numerous galactic potentials, Lense-Thirring precession, Poynting-Robertson drag and stochastic turbulent driving. Phantom is hereby made publicly available.
We compare the properties of giant molecular clouds (GMCs) in M51 identified by the Plateau de Bure Interferometer Whirlpool Arcsecond Survey with GMCs identified in wide-field, high-resolution surveys of CO emission in M33 and the Large Magellanic Cloud (LMC). We find that GMCs in M51 are larger, brighter, and have higher velocity dispersions relative to their sizes than equivalent structures in M33 and the LMC. These differences imply that there are genuine variations in the average mass surface density Σ H 2 of the different GMC populations. To explain this, we propose that the pressure in the interstellar medium surrounding the GMCs plays a role in regulating their density and velocity dispersion. We find no evidence for a correlation between size and linewidth in M51, M33, or the LMC when the CO emission is decomposed into GMCs, although moderately robust correlations are apparent when regions of contiguous CO emission (with no size limitation) are used. Our work demonstrates that observational bias remains an important obstacle to the identification and study of extragalactic GMC populations using CO emission, especially in molecule-rich galactic environments.
We perform calculations of isolated disc galaxies to investigate how the properties of the interstellar medium (ISM), the nature of molecular clouds and the global star formation rate depend on the level of stellar feedback. We adopt a simple physical model, which includes a galactic potential, a standard cooling and heating prescription of the ISM and self‐gravity of the gas. Stellar feedback is implemented by injecting energy into dense, gravitationally collapsing gas, but is independent of the Schmidt–Kennicutt relation. We obtain fractions of gas, and filling factors for different phases of the ISM in reasonable agreement with observations. Supernovae are found to be vital to reproduce the scaleheights of the different components of the ISM, and velocity dispersions. The giant molecular clouds (GMCs) formed in the simulations display mass spectra similar to the observations, their normalization depend on the level of feedback. We find ∼40 per cent of the clouds exhibit retrograde rotation, induced by cloud–cloud collisions. The star formation rates we obtain are in good agreement with the observed Schmidt–Kennicutt relation, and are not strongly depend on the star formation efficiency we assume, being largely self‐regulated by the feedback. We also investigate the effect of spiral structure by comparing calculations with and without the spiral component of the potential. The main difference with a spiral potential is that more massive GMCs are able to accumulate in the spiral arms. Thus we are able to reproduce massive GMCs, and the spurs seen in many grand design galaxies, even with stellar feedback. The presence of the spiral potential does not have an explicit effect on the star formation rate, but can increase the star formation rate indirectly by enabling the formation of long‐lived, strongly bound clouds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.