Identifying therapeutic targets for cancer treatment relies on consistent changes within particular types or sub-types of malignancy. The ability to define either consistent changes or sub-types of malignancy is often masked by tumor heterogeneity. To elucidate therapeutic targets in cutaneous squamous cell carcinoma (cSCC), the most frequent skin neoplasm with malignant potential, we have developed an integrated approach to gene expression profiling beginning with primary keratinocytes in culture. Candidate drivers of cSCC development were derived by first defining a set of in vitro cancer genes and then comparing their expression in a range of clinical data sets containing normal skin, cSCC and the benign hyper-proliferative condition psoriasis. A small interfering RNA (siRNA) screen of the resulting 21 upregulated genes has yielded targets capable of reducing xenograft tumor volume in vivo. Small-molecule inhibitors for one target, Polo-like kinase-1 (PLK1), are already in clinical trials for other malignancies, and our data show efficacy in cSCC. Another target, C20orf20, is identified as being overexpressed in cSCC, and siRNA-mediated knockdown induces apoptosis in vitro and reduces tumor growth in vivo. Thus, our approach has shown established and uncharacterized drivers of tumorigenesis with potent efficacy as therapeutic targets for the treatment of cSCC.
Desmoplakin is a ubiquitous component of desmosomes and desmosome-like structures, such as the cardiomyocyte area composita. Two major isoforms, desmoplakin I (DSPI) and desmoplakin II (DSPII) are encoded by alternative mRNA transcripts differentially spliced from the same gene. The resulting proteins are identical in amino acid sequence with the exception that DSPII contains only one third of the central alpha-helical rod domain present in DSPI. Here we describe a novel minor isoform of desmoplakin that is also produced by alternative splicing of the desmoplakin gene and that we name desmoplakin Ia (DSPIa). DSPIa is an alternatively spliced DSPI mRNA with a unique splice donor site that is 90% homologous to and downstream of the DSPII specific donor. The resulting DSPIa mRNA is in-frame and encodes a protein that has a central alpha-helical rod domain of intermediate size and that is 156 amino acids larger than DSPII and 443 amino acids smaller than DSPI. We demonstrate, through recombinant expression and short interfering RNA knockdown, that the DSPIa protein is readily detectable, albeit at substantially lower levels than the dominant isoforms, DSPI and DSPII. DSPIa mRNA has a similar tissue distribution to that of DSPI and of DSPII.Electronic supplementary materialThe online version of this article (doi:10.1007/s00441-010-0989-1) contains supplementary material, which is available to authorized users.
Type VII collagen is the main component of anchoring fibrils, structures that are integral to basement membrane homeostasis in skin. Mutations in the gene encoding type VII collagen COL7A1 cause recessive dystrophic epidermolysis bullosa (RDEB) an inherited skin blistering condition complicated by frequent aggressive cutaneous squamous cell carcinoma (cSCC). OATP1B3, which is encoded by the gene SLCO1B3, is a member of the OATP (organic anion transporting polypeptide) superfamily responsible for transporting a wide range of endogenous and xenobiotic compounds. OATP1B3 expression is limited to the liver in healthy tissues, but is frequently detected in multiple cancer types and is reported to be associated with differing clinical outcome. The mechanism and functional significance of tumour-specific expression of OATP1B3 has yet to be determined. Here, we identify SLCO1B3 expression in tumour keratinocytes isolated from RDEB and UV-induced cSCC and demonstrate that SLCO1B3 expression and promoter activity are modulated by type VII collagen. We show that reduction of SLCO1B3 expression upon expression of full-length type VII collagen in RDEB cSCC coincides with acquisition of front-to-rear polarity and increased organisation of 3D spheroid cultures. In addition, we show that type VII collagen positively regulates the abundance of markers implicated in cellular polarity, namely ELMO2, PAR3, E-cadherin, B-catenin, ITGA6 and Ln332.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.