In contrast with many capillary beds, the glomerulus readily supports leukocyte recruitment. However, little is known regarding the actions of leukocytes following their recruitment to glomeruli. We used multiphoton confocal microscopy to examine leukocyte behavior in the glomerular microvasculature. In normal glomeruli, neutrophils and monocytes were retained in capillaries for several minutes, remaining static or migrating intravascularly. Induction of glomerular inflammation resulted in an increase in the duration of retention of static and migratory leukocytes. In response to immune complex deposition, both static and migratory neutrophils generated oxidants in inflamed glomeruli via a Mac-1-dependent mechanism. Our results describe a new paradigm for glomerular inflammation, suggesting that the major effect of acute inflammation is to increase the duration of leukocyte retention in the glomerulus. Moreover, these findings describe a previously unknown form of multicellular intravascular patrolling that involves both monocytes and neutrophils, which may underlie the susceptibility of the glomerulus to inflammation.
Nonclassical monocytes undergo intravascular patrolling in blood vessels, positioning them ideally to coordinate responses to inflammatory stimuli. Under some circumstances, the actions of monocytes have been shown to involve promotion of neutrophil recruitment. However, the mechanisms whereby patrolling monocytes control the actions of neutrophils in the circulation are unclear. Here, we examined the contributions of monocytes to antibody-and neutrophildependent inflammation in a model of in situ immune complexmediated glomerulonephritis. Multiphoton and spinning disk confocal intravital microscopy revealed that monocytes patrol both uninflamed and inflamed glomeruli using β 2 and α 4 integrins and CX 3 CR1. Monocyte depletion reduced glomerular injury, demonstrating that these cells promote inappropriate inflammation in this setting. Monocyte depletion also resulted in reductions in neutrophil recruitment and dwell time in glomerular capillaries and in reactive oxygen species (ROS) generation by neutrophils, suggesting a role for cross-talk between monocytes and neutrophils in induction of glomerulonephritis. Consistent with this hypothesis, patrolling monocytes and neutrophils underwent prolonged interactions in glomerular capillaries, with the duration of these interactions increasing during inflammation. Moreover, neutrophils that interacted with monocytes showed increased retention and a greater propensity for ROS generation in the glomerulus. Also, renal patrolling monocytes, but not neutrophils, produced TNF during inflammation, and TNF inhibition reduced neutrophil dwell time and ROS production, as well as renal injury. These findings show that monocytes and neutrophils undergo interactions within the glomerular microvasculature. Moreover, evidence indicates that, in response to an inflammatory stimulus, these interactions allow monocytes to promote neutrophil recruitment and activation within the glomerular microvasculature, leading to neutrophil-dependent tissue injury.monocyte-neutrophil interaction | inflammation | glomerulonephritis | reactive oxygen species | tumor necrosis factor N eutrophil recruitment is a crucial event in the response to tissue injury and host defense against pathogens. However, if dysregulated, it can also cause significant tissue injury. Inappropriate recruitment and activation of neutrophils are recognized as major contributors to organ damage in numerous inflammatory diseases, including inflammatory arthritis, acute respiratory distress syndrome, systemic lupus erythematosus, and acute glomerulonephritis (1-4). Although our understanding of the molecular basis of neutrophil recruitment is well-developed, less is known about the interactions of neutrophils with other circulating immune cells during the development of the innate inflammatory response. However, over the last decade, evidence has emerged that neutrophil recruitment and function during inflammation can be influenced by another circulating immune cell-the monocyte (5-10).Monocytes exist in two major populations,...
HIV-infected individuals are at increased risk of coronary artery disease (CAD) with underlying mechanisms including chronic immune activation and inflammation secondary to HIV-induced microbial translocation and low-grade endotoxemia; direct effects of HIV and viral proteins on macrophage cholesterol metabolism; and dyslipidemia related to HIV infection and specific antiretroviral therapies. Monocytes are the precursors of the lipid-laden foam cells within the atherosclerotic plaque and produce high levels of proinflammatory cytokines such as IL-6. The minor CD14+/CD16+ "proinflammatory" monocyte subpopulation is preferentially susceptible to HIV infection and may play a critical role in the pathogenesis of HIV-related CAD. In this review, the central role of monocytes/macrophages in HIV-related CAD and the importance of inflammation and cholesterol metabolism are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.