There is no sign of saturation in accumulation of alien species (AS) introductions worldwide, additionally the rate of spread for some species has also been shown to be increasing. However, the challenges of gathering information on AS are recognized. Recent developments in citizen science (CS) provide an opportunity to improve data flow and knowledge on AS while ensuring effective and high quality societal engagement with the issue of IAS (Invasive Alien Species). Advances in technology, particularly on-line recording and smartphone apps, along with the development of social media, have revolutionized CS and increased connectivity while new and innovative analysis techniques are emerging to ensure appropriate management, visualization, interpretation and use and sharing of the data. In early July 2018 we launched a European CO-operation in Science and Technology (COST) Action to address multidisciplinary research questions in relation to developing and implementing CS, advancing scientific understanding of AS dynamics while informing decision-making specifically implementation of technical requirements of relevant legislation such as the EU Regulation 1143/2014 on IAS. It will also support the EU biodiversity goals and embedding science within society. The Action will explore and document approaches to establishing a European-wide CS AS network. It will embrace relevant innovations for data gathering and reporting to support the implementation of monitoring and surveillance measures, while ensuring benefits for society and citizens, through an AS CS European network. The Action will, therefore, increase levels of participation and quality of engagement with current CS initiatives, ensuring and evaluating educational value, and improve the value outcomes for potential users including citizens, scientists, alien species managers, policy-makers, local authorities, industry and other stakeholders.
This study reports the first records of the invasive fresh water red swamp crayfish, Procambarus clarkii in Malta, first spotted in the wild in summer 2016. In spring 2017, 26 specimens of P. clarkii were collected, sexed, measured and identified both morphologically and genetically. The distribution and density of the species along the same valley were investigated at Fiddien Valley and Chadwick Lakes. As these two locations are associated with one of the major valley systems that cross the island, the presence of this prolific, aggressive and opportunistic feeding crayfish species increases the vulnerability of native freshwater species.
This work presents the first genetic species identification and phylogenetic analyses of all six bat species known to inhabit the Maltese archipelago. The results provide a DNA-based reference library of 12S rRNA, 16S rRNA, COI, Cytb and ND1 mitochondrial sequences for Maltese bat species. Phylogenetic analyses revealed that the Maltese bat populations do not harbour cryptic diversity. Analyses of genetic diversity for Maltese bat species showed contrasting matrilineal diversity between species, Hypsugo savii exhibited the highest haplotype diversity (Hd = 0.802), while Rhinolophus hipposideros showed no haplotype diversity and Plecotus gaisleri exhibited low values for haplotype diversity (Hd = 0.091). Comparative phylogeographical analyses of mtDNA gene datasets from this study with sequences of conspecific bat populations outside of Malta indicate that mitochondrial haplotypes of Pipistrellus pipistrellus and Rhinolophus hipposideros are unique to the Maltese Islands. Hypsugo savii, Pipistrellus kuhlii, Myotis punicus and Plecotus gaisleri shared the most common mitochondrial haplotype with surrounding geographical areas, including the Ibero-Maghreb region, the Apennine Peninsula and Sicily. The observed genetic diversity and phylogenetic relationships are discussed in the context of the species' biology and long-term conservation planning of Maltese bat populations.
This work presents the first outcomes resulting from a DNA barcode reference library of lepidopteran species from Malta. The library presented here was constructed from the specimens collected between 2015 and 2019 and covers the genetic barcodes of 146 species (ca. 25% of lepidopterous Maltese fauna), including four newly recorded Lepidoptera species from the Maltese islands: Apatema baixerasi, Bostra dipectinialis, Oiketicoides lutea, and Phereoeca praecox. The DNA reference barcode library constructed during this study was analyzed in conjunction with publicly available DNA barcodes and used to assess the ability of the local DNA barcodes to discriminate species. Results showed that each species occupies a different BOLD BIN; therefore, DNA barcoding was able to discriminate between the studied species. Our data led to the formation of 12 new BOLD BINs—that is, OTUs that were identified during this work—while nearly 46% of the barcodes generated during this study were never recorded on conspecifics, further indicating the uniqueness of genetic diversity on these central Mediterranean islands. The outcomes of this study highlight the integrative taxonomic approach, where molecular taxonomy plays an important role for biodiversity investigation in its entirety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.