As one of the fundamental tasks in text analysis, phrase mining aims at extracting quality phrases from a text corpus and has various downstream applications including information extraction/retrieval, taxonomy construction, and topic modeling. Most existing methods rely on complex, trained linguistic analyzers, and thus likely have unsatisfactory performance on text corpora of new domains and genres without extra but expensive adaption. None of the state-of-the-art models, even data-driven models, is fully automated because they require human experts for designing rules or labeling phrases. In this paper, we propose a novel framework for automated phrase mining, AutoPhrase, which supports any language as long as a general knowledge base (e.g., Wikipedia) in that language is available, while benefiting from, but not requiring, a POS tagger. Compared to the state-of-the-art methods, AutoPhrase has shown significant improvements in both effectiveness and efficiency on five real-world datasets across different domains and languages. Besides, AutoPhrase can be extend to model single-word quality phrases.
While most topic modeling algorithms model text corpora with unigrams, human interpretation often relies on inherent grouping of terms into phrases. As such, we consider the problem of discovering topical phrases of mixed lengths. Existing work either performs post processing to the results of unigram-based topic models, or utilizes complex n-gramdiscovery topic models. These methods generally produce low-quality topical phrases or suffer from poor scalability on even moderately-sized datasets. We propose a different approach that is both computationally efficient and effective. Our solution combines a novel phrase mining framework to segment a document into single and multi-word phrases, and a new topic model that operates on the induced document partition. Our approach discovers high quality topical phrases with negligible extra cost to the bag-of-words topic model in a variety of datasets including research publication titles, abstracts, reviews, and news articles.
Most previous event extraction studies have relied heavily on features derived from annotated event mentions, thus cannot be applied to new event types without annotation effort. In this work, we take a fresh look at event extraction and model it as a grounding problem. We design a transferable neural architecture, mapping event mentions and types jointly into a shared semantic space using structural and compositional neural networks, where the type of each event mention can be determined by the closest of all candidate types . By leveraging (1) available manual annotations for a small set of existing event types and (2) existing event ontologies, our framework applies to new event types without requiring additional annotation. Experiments on both existing event types (e.g., ACE, ERE) and new event types (e.g., FrameNet) demonstrate the effectiveness of our approach. Without any manual annotations for 23 new event types, our zero-shot framework achieved performance comparable to a state-of-theart supervised model which is trained from the annotations of 500 event mentions.
We propose a brand new "Liberal" Event Extraction paradigm to extract events and discover event schemas from any input corpus simultaneously. We incorporate symbolic (e.g., Abstract Meaning Representation) and distributional semantics to detect and represent event structures and adopt a joint typing framework to simultaneously extract event types and argument roles and discover an event schema. Experiments on general and specific domains demonstrate that this framework can construct high-quality schemas with many event and argument role types, covering a high proportion of event types and argument roles in manually defined schemas. We show that extraction performance using discovered schemas is comparable to supervised models trained from a large amount of data labeled according to predefined event types. The extraction quality of new event types is also promising.
Current systems of fine-grained entity typing use distant supervision in conjunction with existing knowledge bases to assign categories (type labels) to entity mentions. However, the type labels so obtained from knowledge bases are often noisy (i.e., incorrect for the entity mention's local context). We define a new task, Label Noise Reduction in Entity Typing (LNR), to be the automatic identification of correct type labels (type-paths) for training examples, given the set of candidate type labels obtained by distant supervision with a given type hierarchy. The unknown type labels for individual entity mentions and the semantic similarity between entity types pose unique challenges for solving the LNR task. We propose a general framework, called PLE, to jointly embed entity mentions, text features and entity types into the same low-dimensional space where, in that space, objects whose types are semantically close have similar representations. Then we estimate the type-path for each training example in a top-down manner using the learned embeddings. We formulate a global objective for learning the embeddings from text corpora and knowledge bases, which adopts a novel margin-based loss that is robust to noisy labels and faithfully models type correlation derived from knowledge bases. Our experiments on three public typing datasets demonstrate the effectiveness and robustness of PLE, with an average of 25% improvement in accuracy compared to next best method. * Equal contribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.