As one of the fundamental tasks in text analysis, phrase mining aims at extracting quality phrases from a text corpus and has various downstream applications including information extraction/retrieval, taxonomy construction, and topic modeling. Most existing methods rely on complex, trained linguistic analyzers, and thus likely have unsatisfactory performance on text corpora of new domains and genres without extra but expensive adaption. None of the state-of-the-art models, even data-driven models, is fully automated because they require human experts for designing rules or labeling phrases. In this paper, we propose a novel framework for automated phrase mining, AutoPhrase, which supports any language as long as a general knowledge base (e.g., Wikipedia) in that language is available, while benefiting from, but not requiring, a POS tagger. Compared to the state-of-the-art methods, AutoPhrase has shown significant improvements in both effectiveness and efficiency on five real-world datasets across different domains and languages. Besides, AutoPhrase can be extend to model single-word quality phrases.
Given a directed graph of millions of nodes, how can we automatically spot anomalous, suspicious nodes judging only from their connectivity patterns? Suspicious graph patterns show up in many applications, from Twitter users who buy fake followers, manipulating the social network, to botnet members performing distributed denial of service attacks, disturbing the network traffic graph. We propose a fast and effective method, CATCHSYNC, which exploits two of the tell-tale signs left in graphs by fraudsters: (a) synchronized behavior: suspicious nodes have extremely similar behavior patterns because they are often required to perform some task together (such as follow the same user); and (b) rare behavior: their connectivity patterns are very different from the majority. We introduce novel measures to quantify both concepts ("synchronicity" and "normality") and we propose a parameter-free algorithm that works on the resulting synchronicitynormality plots. Thanks to careful design, CATCHSYNC has the following desirable properties: (a) it is scalable to large datasets, being linear in the graph size; (b) it is parameter free; and (c) it is side-information-oblivious: it can operate using only the topology, without needing labeled data, nor timing information, and the like., while still capable of using side information if available. We applied CATCHSYNC on three large, real datasets, 1-billion-edge Twitter social graph, 3-billion-edge, and 12-billion-edge Tencent Weibo social graphs, and several synthetic ones; CATCHSYNC consistently outperforms existing competitors, both in detection accuracy by 36% on Twitter and 20% on Tencent Weibo, as well as in speed.
No abstract
Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.