Fas-mediated mechanisms of apoptosis are thought to be involved in the bile duct loss that characterizes diseases such as primary biliary cirrhosis (PBC). We have previously shown that activation of CD40 on hepatocytes can amplify Fas-mediated apoptosis; in the present study, we investigated interactions between CD40 and Fas in biliary epithelial cells (BEC). We report that the bile ducts in PBC liver tissue frequently express increased levels of Fas, Fas ligand (FasL), and CD40 associated with apoptotic BEC. The portal mononuclear infiltrate contains CD40L+ve T cells and macrophages, thereby demonstrating a potential mechanism for CD40 engagement in vivo. Primary cultures of human BEC also expressed Fas, FasL, and CD40 but not CD40L protein or mRNA. Activation of CD40 on BEC using recombinant CD40L increased transcriptional expression of FasL and induced apoptosis, which was inhibited by neutralizing antibodies to either Fas or FasL. Thus, CD40-induced apoptosis of BEC is mediated through Fas/FasL. We then investigated the intracellular signals and transcription factors activated in BEC and found that NF-kappaB and AP-1 were both activated after CD40 ligation. Increased functional NF-kappaB was seen early after CD40 ligation, but returned to baseline levels after 4 h. In contrast, the rapid up-regulation of AP-1 was sustained over 24 h. This study provides further functional evidence of the ability of CD40 to induce Fas/FasL-dependent apoptosis of liver epithelial cells supporting the importance of cross-talk between tumor necrosis factor (TNF) receptor family members as an amplification step in apoptosis induction. Sustained activation of AP-1 in the absence of NF-kappaB signaling may be a critical factor in determining the outcome of CD40 engagement.
CD40, a tumor necrosis factor receptor superfamily member, is up-regulated on intraheptatic endothelial cells (IHEC) and epithelial cells during inflammatory liver disease, and there is evidence that the functional outcome of CD40 ligation differs between cell types. Ligation of CD40 on cholangiocytes or hepatocytes results in induction of Fas-mediated apoptosis, whereas ligation of IHEC CD40 leads to enhanced chemokine secretion and adhesion molecule expression. We now report that differential activation of two transcription factors, nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), in primary human hepatocytes or IHEC, is associated with and may explain, in part, the different responses of these cell types to CD40 ligation. CD40 ligation induced a rise in NF-κB activity in hepatocytes ,which peaked at 2 h and returned to baseline by 24 h; however, IHEC CD40 ligation resulted in a sustained up-regulation of NF-κB (>24 h). In hepatocytes, CD40 ligation led to sustained up-regulation of AP-1 activity >24 h associated with increased protein levels of RelA (p65), c-Jun, and c-Fos, whereas no induction of AP-1 activity was observed in IHECs. Analysis of mitogen-activated protein kinase phosphorylation (phospho-extracellular signal-regulated kinase 1/2 and phospho-c-Jun NH2-terminal kinase 1/2) and expression of inhibitor κBα were entirely consistent, and thus confirmed the profiles of NF-κB and AP-1 signaling and the effects of the selective inhibitors assessed using electrophoretic mobility shift assay or Western immunoblotting. CD40 ligation resulted in induction of apoptosis in hepatocytes after 24 h, but on IHECs, CD40 ligation resulted in proliferation. Inhibition of (CD40-mediated) NF-κB activation prevented IHEC proliferation and led to induction of apoptosis. Selective extracellular signal-regulated kinase and c-Jun NH2-terminal kinase inhibitors reduced levels of apoptosis in (CD40-stimulated) hepatocytes by ∼50%. We conclude that differential activation of these two transcription factors in response to CD40 ligation is associated with differences in cell fate. Transient activation of NF-κB and sustained AP-1 activation is associated with apoptosis in hepatocytes, whereas prolonged NF-κB activation and a lack of AP-1 activation in IHECs result in proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.