Thorn CE, Matcher SJ, Meglinski IV, Shore AC. Is mean blood saturation a useful marker of tissue oxygenation?. Am J Physiol Heart Circ Physiol 296: H1289 -H1295, 2009. First published March 13, 2009 doi:10.1152/ajpheart.01192.2008.-Increasingly we are monitoring the distribution of oxygen through the microcirculation using optical techniques such as optical reflectance spectroscopy (ORS) and near-infrared spectroscopy. Mean blood oxygen saturation (SmbO2) and tissue oxygenation index measured by these two techniques, respectively, evoke a concept of the measurement of oxygen delivery to tissue. This study aims to establish whether SmbO2 is an appropriate indicator of tissue oxygenation. Spontaneous fluctuations in SmbO2 observed as changes in concentration of oxyhemoglobin ([HbO2]) and deoxyhemoglobin ([Hb]) were measured by ORS in the skin microcirculation of 30 healthy subjects (15 men, age 21-42 yr). Fourier analysis identified two distinctly different spontaneous falls in SmbO2. The first type of swing, thought to be induced by fluctuations in arterial blood volume, resulted from the effects of respiration, endothelial, sympathetic, and myogenic activity. There was no apparent change in [Hb]. In contrast, a second type of swing resulted from a fall in [HbO2] accompanied by a rise in [Hb] and was only induced by endothelial and sympathetic activity. Thus the same fall in SmbO2 can be induced by two distinct responses. A "type I" swing does not suggest an inadequacy in oxygen delivery whereas a "type II" swing may indicate a change in oxygen delivery from blood to tissue. SmbO2 alone cannot therefore be accepted as a definitive marker of tissue oxygenation.optical reflectance spectroscopy; microcirculation THE EXQUISITE STRUCTURE OF the microcirculation is designed to deliver nutrients to every cell in the human body. The development over the last 30 years of noninvasive optical techniques such as optical reflectance spectroscopy (ORS) (2,18,22,33) and near-infrared spectroscopy (NIRS) (7, 23) has significantly advanced our understanding of the hemodynamics of the cutaneous (1, 20), muscle (36), cerebral (11,13,29,48), and gastrointestinal (15, 38) microcirculation. Furthermore, mean blood saturation (S mb O 2 ) and tissue oxygen index (TOI) derived by ORS and NIRS, respectively, evoke a concept that we can also measure the oxygen delivery to the tissue. These parameters are increasingly being identified as indicators of tissue hypoxia (1,3,8,15,21,28,34,47), which is a common end product of circulatory shock and a primary target for resuscitation efforts (5, 37).The primary goal of this study was to establish whether cutaneous tissue oxygen saturation (i.e., S mb O 2 ) derived by ORS is an appropriate indicator of tissue oxygenation. A further goal was to explore differences in S mb O 2 across cuta- [Hb] across all the vessels of the microcirculation of the skin. Therefore the derived S mb O 2 is a mean blood oxygen saturation across arterioles, capillaries, and venules. METHODS ORS.The ORS instrumentatio...
Vasomotion is defined as a spontaneous local oscillation in vascular tone whose function is unclear but may have a beneficial effect on tissue oxygenation. Optical reflectance spectroscopy and laser Doppler fluximetry provide unique insights into the possible mechanisms of vasomotion in the cutaneous microcirculation through the simultaneous measurement of changes in concentration of oxyhemoglobin ([HbO(2)]), deoxyhemoglobin ([Hb]), and mean blood saturation (S(mb)O(2)) along with blood volume and flux. The effect of vasomotion at frequencies <0.02 Hz attributed to endothelial activity was studied in the dorsal forearm skin of 24 healthy males. Fourier analysis identified periodic fluctuations in S(mb)O(2) in 19 out of 24 subjects, predominantly where skin temperatures were >29.3°C (X(2) = 6.19, P < 0.02). A consistent minimum threshold in S(mb)O(2) (mean: 39.4%, range: 24.0-50.6%) was seen to precede a sudden transient surge in flux, inducing a fast rise in S(mb)O(2). The integral increase in flux correlated with the integral increase in [HbO(2)] (Pearson's correlation r(2) = 0.50, P < 0.001) and with little change in blood volume suggests vasodilation upstream, responding to a low S(mb)O(2) downstream. This transient surge in flux was followed by a sustained period where blood volume and flux remained relatively constant and a steady decrease in [HbO(2)] and equal and opposite increase in [Hb] was considered to provide a measure of oxygen extraction. A measure of this oxygen extraction has been approximated by the mean half-life of the decay in S(mb)O(2) during this period. A comparison of the mean half-life in the 8 normal subjects [body mass index (BMI) <26.0 kg/m(2)] of 12.2 s and the 11 obese subjects (BMI >29.5 kg/m(2)) of 18.8 s was statistically significant (Mann Whitney, P < 0.004). The S(mb)O(2) fluctuated spontaneously in this saw tooth manner by an average of 9.0% (range 4.0-16.2%) from mean S(mb)O(2) values ranging from 30 to 52%. These observations support the hypothesis that red blood cells may act as sensors of local tissue hypoxia, through the oxygenation status of the hemoglobin, and initiate improved local perfusion to the tissue through hypoxic vasodilation.
A range of technologies using near infrared (NIR) light have shown promise at providing real time measurements of hemodynamic markers in bone tissue in vivo, an exciting prospect given existing difficulties in measuring hemodynamics in bone tissue. This systematic review aimed to evaluate the evidence for this potential use of NIR systems, establishing their potential as a research tool in this field. Major electronic databases including MEDLINE and EMBASE were searched using pre-planned search strategies with broad scope for any in vivo use of NIR technologies in human bone tissue. Following identification of studies by title and abstract screening, full text inclusion was determined by double blind assessment using predefined criteria. Full text studies for inclusion were data extracted using a predesigned proforma and quality assessed. Narrative synthesis was appropriate given the wide heterogeneity of included studies. Eighty-eight full text studies fulfilled the inclusion criteria, 57 addressing laser Doppler flowmetry (56 intra-operatively), 21 near infrared spectroscopy, and 10 photoplethysmography. The heterogeneity of the methodologies included differing hemodynamic markers, measurement protocols, anatomical locations, and research applications, making meaningful direct comparisons impossible. Further, studies were often limited by small sample sizes with potential selection biases, detection biases, and wide variability in results between participants. Despite promising potential in the use of NIR light to interrogate bone circulation, the application of NIR systems in bone requires rigorous assessment of the reproducibility of potential hemodynamic markers and further validation of these markers against alternative physiologically relevant reference standards. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2595-2603, 2018.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.