To study the CD4+ and CD8+ tumor infiltrating lymphocytes (TIL) in the antitumor response, we propagated these subsets directly from tumor tissues with anti-CD3:anti-CD8 (CD3,8) and anti-CD3:anti-CD4 (CD3,4) bispecific mAb (BSMAB). CD3,8 BSMAB cause selective cytolysis of CD8+ lymphocytes by bridging the CD8 molecules of target lymphocytes to the CD3 molecular complex of cytolytic T lymphocytes with concurrent activation and proliferation of residual CD3+CD4+ T lymphocytes. Similarly, CD3,4 BSMAB cause selective lysis of CD4+ lymphocytes whereas concurrently activating the residual CD3+CD8+ T cells. Small tumor fragments from four malignant melanoma and three renal cell carcinoma patients were cultured in medium containing CD3,8 + IL-2, CD3,4 + IL-2, or IL-2 alone. CD3,8 led to selective propagation of the CD4+ TIL whereas CD3,4 led to selective propagation of the CD8+ TIL from each of the tumors. The phenotypes of the TIL subset cultures were generally stable when assayed over a 1 to 3 months period and after further expansion with anti-CD3 mAb or lectins. Specific 51Cr release of labeled target cells that were bridged to the CD3 molecular complexes of TIL suggested that both CD4+ and CD8+ TIL cultures have the capacity of mediating cytolysis via their Ti/CD3 TCR complexes. In addition, both CD4+ and CD8+ TIL cultures from most patients caused substantial (greater than 20%) lysis of the NK-sensitive K562 cell line. The majority of CD4+ but not CD8+ TIL cultures also produced substantial lysis of the NK-resistant Daudi cell line. Lysis of the autologous tumor by the TIL subsets was assessed in two patients with malignant melanoma. The CD8+ TIL from one tumor demonstrated cytotoxic activity against the autologous tumor but negligible lysis of allogeneic melanoma targets. In conclusion, immunocompetent CD4+ and CD8+ TIL subsets can be isolated and expanded directly from small tumor fragments of malignant melanoma and renal cell carcinoma using BSMAB. The resultant TIL subsets can be further expanded for detailed studies or for adoptive immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.