Background
Clinical complexity is increasingly prevalent among patients with atrial fibrillation (AF). The ‘Atrial fibrillation Better Care’ (ABC) pathway approach has been proposed to streamline a more holistic and integrated approach to AF care; however, there are limited data on its usefulness among clinically complex patients. We aim to determine the impact of ABC pathway in a contemporary cohort of clinically complex AF patients.
Methods
From the ESC-EHRA EORP-AF General Long-Term Registry, we analysed clinically complex AF patients, defined as the presence of frailty, multimorbidity and/or polypharmacy. A K-medoids cluster analysis was performed to identify different groups of clinical complexity. The impact of an ABC-adherent approach on major outcomes was analysed through Cox-regression analyses and delay of event (DoE) analyses.
Results
Among 9966 AF patients included, 8289 (83.1%) were clinically complex. Adherence to the ABC pathway in the clinically complex group reduced the risk of all-cause death (adjusted HR [aHR]: 0.72, 95%CI 0.58–0.91), major adverse cardiovascular events (MACEs; aHR: 0.68, 95%CI 0.52–0.87) and composite outcome (aHR: 0.70, 95%CI: 0.58–0.85). Adherence to the ABC pathway was associated with a significant reduction in the risk of death (aHR: 0.74, 95%CI 0.56–0.98) and composite outcome (aHR: 0.76, 95%CI 0.60–0.96) also in the high-complexity cluster; similar trends were observed for MACEs. In DoE analyses, an ABC-adherent approach resulted in significant gains in event-free survival for all the outcomes investigated in clinically complex patients. Based on absolute risk reduction at 1 year of follow-up, the number needed to treat for ABC pathway adherence was 24 for all-cause death, 31 for MACEs and 20 for the composite outcome.
Conclusions
An ABC-adherent approach reduces the risk of major outcomes in clinically complex AF patients. Ensuring adherence to the ABC pathway is essential to improve clinical outcomes among clinically complex AF patients.
The effects of ventricular pacing on left ventricular (LV) dynamic geometry, function, and myocardial oxygen consumption (MVO2) were measured in 12 conscious dogs using sonomicrometry, micromanometry, ultrasonic flow probes, and oximetry catheters during right atrial (A-) and right ventricular (V-) pacing at 150 beats/min. Systolic function was quantified using slopes (MW) and volume-intercepts (VW) of linear relationships between end-diastolic volume (EDV) and stroke work (SW) for data obtained during vena caval occlusion. V-pacing shifted SW-EDV relationships downward (MW decreased from 97 +/- 21 to 81 +/- 21 Kerg/mL) and to the right (VW increased from 14 +/- 11 to 20 +/- 12 mL) in comparison with A-pacing (P < 0.02). These functional changes correlated with altered contractile geometry manifest as early shortening in the septal free wall relative to anterior-posterior dimension (increased minor axis mid-wall eccentricity at end-diastole and begin-ejection). Steady-state LV power output decreased from 802 +/- 213 mW during A-pacing to 514 +/- 170 mW during V-pacing (P < 0.05), while MVO2 remained relatively unchanged during V-pacing (10 +/- 3 mL O2/min vs 11 +/- 3 mL O2/min during A-pacing, P = NS). As a result, overall LV efficiency decreased from 0.24 +/- 0.08 during A-pacing to 0.16 +/- 0.06 during V-pacing (P < 0.05). These data illustrate the impact of V-pacing on dynamic LV geometry and function, including impaired LV work output at all physiological levels of preload. Most importantly, the relationship between LV work output and MVO2 is depressed during V-pacing, emphasizing the interaction between LV mechanics and pump efficiency in intact subjects. As a result, measures taken to restore normal contractile geometry might improve LV efficiency and performance when V-pacing is necessary.
A new practical descriptor of metabolic to mechanical myocardial energy transfer (MET), termed the virtual work model, was evaluated in 32 conscious dogs and in 8 isolated canine hearts. An index of total mechanical energy expenditure (TME) was calculated as the sum of external energy (stroke work) and an internal energy index of heat (left ventricular end-diastolic volume times left ventricular mean ejection pressure). Physiological comparison of TME (x-axis) and myocardial oxygen consumption (MVO2; y-axis) yielded highly linear MET relationships (mean r = 0.93 +/- 0.07), with an average slope of 0.86 +/- 0.39 (SD) and a y-intercept of 9.1 +/- 6.4 mW/ml myocardium. The linear MVO2-TME relationship did not vary under steady-state vs. dynamic vena caval occlusion, increased heart rate, increased afterload, or increased inotropic state with calcium infusion. Compared with five other indexes of myocardial energetics, the virtual work model of MET was the most linear, the most practical in not requiring determination of the end-systolic pressure-volume relationship, and the most accurate predictor of MVO2 under normal and altered hemodynamic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.