Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
SARS-CoV-2 has been associated with an increased rate of venous thromboembolism in critically ill patients. Since surgical patients are already at higher risk of venous thromboembolism than general populations, this study aimed to determine if patients with peri-operative or prior SARS-CoV-2 were at further increased risk of venous thromboembolism. We conducted a planned sub-study and analysis from an international, multicentre, prospective cohort study of elective and emergency patients undergoing surgery during October 2020. Patients from all surgical specialties were included. The primary outcome measure was venous thromboembolism (pulmonary embolism or deep vein thrombosis) within 30 days of surgery. SARS-CoV-2 diagnosis was defined as peri-operative (7 days before to 30 days after surgery); recent (1-6 weeks before surgery); previous (≥7 weeks before surgery); or none. Information on prophylaxis regimens or pre-operative anti-coagulation for baseline comorbidities was not available. Postoperative venous thromboembolism rate was 0.5% (666/123,591) in patients without SARS-CoV-2; 2.2% (50/2317) in patients with peri-operative SARS-CoV-2; 1.6% (15/953) in patients with recent SARS-CoV-2; and 1.0% (11/1148) in patients with previous SARS-CoV-2. After adjustment for confounding factors, patients with peri-operative (adjusted odds ratio 1.5 (95%CI 1.1-2.0)) and recent SARS-CoV-2 (1.9 (95%CI 1.2-3.3)) remained at higher risk of venous thromboembolism, with a borderline finding in previous SARS-CoV-2 (1.7 (95%CI 0.9-3.0)). Overall, venous thromboembolism was independently associated with 30-day mortality ). In patients with SARS-CoV-2, mortality without venous thromboembolism was 7.4% (319/4342) and with venous thromboembolism was 40.8% (31/76). Patients undergoing surgery with peri-operative or recent SARS-CoV-2 appear to be at increased risk of postoperative venous thromboembolism compared with patients with no history of SARS-CoV-2 infection. Optimal venous thromboembolism prophylaxis and treatment are unknown in this cohort of patients, and these data should be interpreted accordingly.
KEY FINDINGS Current evidence does NOT support use of IgM/IgG rapid test kits for the definitive diagnosis of COVID-19 in currently symptomatic patients. • The present standard for diagnosis of COVID-19 is through qualitative detection of COVID-19 virus nucleic acid via reverse transcription polymerase chain reaction (RT-PCR). • Due to long turnaround times and complicated logistical operations, a rapid and simple field test alternative is needed to diagnose and screen patients. • An alternative to the direct detection and measurement of viral load (RT-PCR) is the qualitative detection of specific antibodies to COVID-19. ELISA (discussed in a separate rapid review) and lateral flow immunoassay (LFIA) IgM/IgG rapid test kits are two currently available, qualitative, antibody tests for COVID-19. • Two low quality clinical trials showed that there is insufficient evidence to support the use of IgM/IgG rapid test kits for the definitive diagnosis of COVID-19. Diagnostic accuracy varies greatly depending on the timing of the test. The test performed very poorly during the early phase of the disease (i.e., less than eight days from onset of symptoms). • Existing guidelines do not recommend serologic antibody tests for the diagnosis of COVID-19 in currently symptomatic patients.
BackgroundInguinal hernia is a common condition and its repair (herniorrhaphy) is one of the most commonly performed procedures in general surgery. The Lichtenstein herniorrhaphy technique is a widely used and effective surgery that uses mesh to reinforce the area of weakness. Although a wide range of mesh sizes are available for use in hernia repair, in low-resource health care settings the provision of multiple products may not be supportable and it may be necessary for the provision and use of a single mesh size. This study aimed to determine whether the recommended 7.0 cm x 15.0 cm size is an appropriate single mesh size.MethodsIn order to determine the optimal mesh size according to recommended surgical practices, in vivo measurements of key dimensions of the inguinal floor were taken in patients undergoing herniorrhaphy.ResultsMeasurements were taken in 43 patients: 40 men and 3 women, mean age 43 years (SD 13.6); 39 with indirect hernias, 4 with direct. Allowing for recommended mesh overlaps, the optimal mesh size for provision to be appropriate for the majority of patients was determined to be 8.5 cm x 14.0 cm, 21% wider than the mesh size currently recommended for use in Lichtenstein herniorrhaphy.ConclusionsAn appropriate size for routine provision in low-resource settings, or other settings where the provision of several mesh sizes is not supportable, may be 8.5 cm x 14.0 cm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.